
Part III

Week 2A: Character Theory

Be more concerned
with your character
than your representation

- UCLA basketball coach John Wooden’s
take on modern group theory



Character theory in a nutshell

Character theory uses simple and natural numerical invariants
to describe groups

Most group theoretic concepts are influenced by character
theory

Character tables are often easier to work with than groups, and
almost always preferable to irreducible representations



Character theory is useful

Character theory forms a large part of natural proofs of the
following nice results:

1 Groups of order paqb are solvable

2 If a 2-group has exactly 4k + 1 elements of order 2, then it is
cyclic, dihedral, quaternion, or semidihedral.

3 For a group H, there are only finitely many simple groups G
containing an involution t with CG(t) = H. For instance, if H is
order 8 dihedral, then G = PSL(2,7) or G = PSL(2,9).

4 The simple groups with elementary abelian, self-centralizing
Sylow 2-subgroup are precisely SL(2,2k )

5 No nonabelian simple group has a cyclic Sylow 2-subgroup, nor
a quaternion Sylow 2-subgroup



Character theory reflects group theory

A group G has the form P n K for K a normal abelian p′-group,
P a p-group if and only if every character has degree a power
of p. If every character has degree merely divisible by p, then K
need not be abelian.

A group has the form K n P for K a p′-subgroup and P a
normal p-subgroup if and only if the p-part of every irreducible
character is a character.

The character table determines:

1 The lattice of normal subgroups, including their size and the
property of having Abelian quotient

2 Whether the group is solvable (of what derived length), whether
the group is nilpotent (of what class), and the commutator length



Character theory is compatible with combinatorics

Many of the earliest and the most important applications of
character theory are to counting

Character values are (cyclotomic) integers

Characters are nonnegative sums of irreducible characters, and
decomposing known charcters into unknown irreducibles is
attacked through various combinatorial methods

For the symmetric group, character values are plain old integers
that can be read off as coefficients of classical polynomials

Characters are studied using combinatorial objects such as
Brauer trees (and graphs)



Ok, I’m sold! What did I buy?

Characters are defined from representations

A representation of a finite group G is a homomorphism from
G into the group of n × n complex matrices, GL(n,C)

A character of a finite group is a function χ from G to C such
that there is some representation X of G with χ(g) equal to the
trace of X (g)

The trace is invariant under change of basis (it is the sum of the
eigenvalues) and easy to calculate (it is the sum of the diagonal
entries)



Basic properties

The definition of χ(g) as trace gives a number of properties:

1 χ(g) is a sum of |g|th roots of unity

2 |χ(g)| ≤ χ(1), which is the dimension of the representation
(1 + 1 + . . .+ 1), called the degree of χ

3 χ(g) = χ(1) if and only if X (g) = X (1)

4 |χ(g)| = χ(1) if and only if X (g) = χ(g)/χ(1) · X (1) is a scalar
matrix

5 χ(g) = χ(g−1)



More definitions and properties
A representation is irreducible if the G-orbit of every nonzero
vector is a spanning set

The inner product of two characters χ, ψ is

[χ, ψ] = 1
|G|

∑
g∈G

χ(g)ψ(g−1)

There are finitely many irreducible characters

They form an orthonormal basis of the vector space of all
complex functions constant on conjugacy classes of G

ψ =
∑

χ∈Irr(G)

mχχ if and only if mχ = [ψ, χ]

A character ψ is irreducible if and only if [ψ,ψ] = 1



More properties

Two elements g,h ∈ G are conjugate in G if and only if
χ(g) = χ(h) for every irreducible character of G

Two representations are isomorphic as G-modules if and only if
their characters are equal

If χ is irreducible, then χ(1) divides |G|, in fact for any abelian
subnormal subgroup A, χ(1)|[G : A]

The number irreducible characters is equal to the number of
conjugacy classes

|G| =
∑

χ∈Irr(G)

χ(1)2



New characters from old
Induction expands a charcter from a subgroup to the whole
group, much like a permutation matrix expands “1” from a
subgroup to the whole group via the action of the group on
cosets

Inflation expands a character from a quotient group to the
whole group in a very nice way:

G � G/N → GL(n,C)

Restriction takes a character from the whole group to a
subgroup

Tensor product takes a character from two groups and forms
one for their direct product
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All characters come from old permutation characters
If G is a permutation group with permutation character χ, then
all characters of G are constituents of tensor powers of χ

But how do we figure out how to break down a character?

For the symmetric groups, some permutation characters come
in a nice order, and the only new irreducible characters occur
exactly one at a time, so

New = Perm −
∑

χ known

[χ,Perm]χ

The character of a permutation character is the number of fixed
points. If K is a point stabilizer, then we want to count how
often ghK = hK , that is how often h−1gh ∈ K :

χ(g) = #{h ∈ G : h−1gh ∈ K}/#K



Some examples
Sym(1) has only one conjugacy class, so only one irreducible
character. It is the character χ(g) = 1

Sym(2) has two conjugacy classes.

1 One irreducible character is the inflation of the character of
Sym(1) = Sym(2) / Sym(2), χ(g) = 1

2 The induced character is just the permutation character of
Sym(2) acting on the cosets of Sym(1), so here the values are
the number of fixed points, ψ(1) = 2 and ψ(1,2) = 0, but
[ψ,ψ] = 1

2 (22 + 0) = 2 so it is not irreducible

3 Luckily [ψ, χ] = 1 so θ = ψ − χ is an irreducible character

Sym(3) follows a similar path, three conjugacy classes. First
irreducible character inflated from Sym(1), second found by
fixing the induced character from Sym(2), the third found by
fixing the induced character from Sym(1)



Perm. and irred. characters of Sym(3)

1 3 2

Sym(3)

P 1 1 1

P 3 1 0

P 6 0 0

1 3 2

Sym(3)

S 1 1 1

S 2 0 -1

S 1 -1 1

S = P since 〈P ,P 〉 = 1

S = P − S since
〈

P ,S
〉

= 1

S = P − S − 2S since
〈

P ,S
〉

= 1

and
〈

P ,S
〉

= 2



More examples

Sym(4) has five conjugacy classes, so five irreducible
characters

Begin with the permutation characters induced from Young
subgroups

Note that gH = kgH if and only if kg ∈ H, so to calculate a
permutation character, we only need to count how many
elements conjugate k into H and divide |H|



Permutation characters of Sym(4)

1 6 8 6 3

Sym(4)

P 1 1 1 1 1

P 4 2 1 0 0

P 6 2 0 0 2

P 12 2 0 0 0

P 24 0 0 0 0



Scalar products for permutation characters〈
P ,P

〉
=

(1 · 1 · 1 + 1 · 1 · 6 + 1 · 1 · 8 + 1 · 1 · 6 + 1 · 1 · 3)/24 = 1〈
P ,P

〉
=

(4 · 1 · 1 + 2 · 1 · 6 + 1 · 1 · 8 + 0 · 1 · 1 + 0 · 1 · 3)/24 = 1〈
P ,P

〉
= 2, so P − P is irreducible

Define S = P to be the first irreducible character
we found

S = P − P to be the second

Continue in this fashion to subtract off the known S characters
from the P characters



Irreducible characters of Sym(4)

1 6 8 6 3

Sym(4)

S 1 1 1 1 1

S 3 1 0 -1 -1

S 2 0 -1 0 2

S 3 -1 0 1 -1

S 1 -1 1 -1 1



Permutation characters of Sym(5)

1 10 15 20 20 30 24

Sym(5)

P 1 1 1 1 1 1 1

P 5 3 1 2 0 1 0

P 10 4 2 1 1 0 0

P 20 6 0 2 0 0 0

P 30 6 2 0 0 0 0

P 60 6 0 0 0 0 0

P 120 0 0 0 0 0 0



Irreducible characters of Sym(5)

1 10 15 20 20 30 24

Sym(5)

S 1 1 1 1 1 1 1

S 4 2 0 1 -1 0 -1

S 5 1 1 -1 1 -1 0

S 6 0 -2 0 0 0 1

S 5 -1 1 -1 -1 1 0

S 4 -2 0 1 1 0 -1

S 1 -1 1 1 -1 -1 1



Conclusion

Characters are wonderfully useful (claimed, not shown)

Characters are easy to work with (hopefully shown)

Characters are fun and pretty

When one has trouble understanding what might be true at the
module or matrix level, see what it says for characters

THE END
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