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Computational group theory is a wonderful branch of science studying how to ask questions in group theory in ways

amenable to computation and the corresponding methods of answering them algorithmically. Many of the results of

this field are made available in the computer software GAP.



Outline

Why should I avoid finitely presented groups like the plague?

How do I compute with finite soluble groups?

How do I search GAP libraries for small counterexamples?

How do I construct my own finite soluble groups?



Finitely presented groups: friend or foe?

Topologists love presentations: intrinsically topological and
geometrical

Homologicalists love presentations: intrinsically homological

Everyone loves presentations: easy to read, deceptively easy to use
for small groups

There does not exist (now or ever) an algorithm that can take 13
elements of a free group on 4 generators, and decide whether the
first is a product of conjugates of the others.

No computer can reliably handle finitely presented groups!

No one knows if 〈x , y : x2 = y3 = (xy)13 = [x , y ]4 = 1〉 is an
infinite group or a group of order 220 · 34 · 52 · 132.



Finite soluble groups

A composition series of a finite soluble groups has cyclic factors of
prime order

Let {g1, . . . , gn} be preimages of generators of the factors

Let Gi = 〈gi , gi+1, . . . , gn〉 be the composition series

Gi+1 is normalized by gi , so for i < j , gj ∈ Gi+1 and

ggi
j =

n∏
k=i+1

g
ei,j,k

k

gi generates Gi/Gi+1, so

gpi
i =

n∏
k=i+1

g
ei,i,k

k



Collection

ggi
j = wi ,j can also be viewed as

gj · gi 7→ giwi ,j

Note that wi ,j ∈ Gi+1 so the smaller indices are all on the left

Repeatedly using these
(n
2

)
rules, we can collect any product of

generators of G into the form

h =
n∏

i=1

g
h(i)
i

where the product is taken in order

h = g
h(1)
1 · gh(2)

2 · · · gh(n)
n



Polycyclic presentations
Remember all elements are of the form:

h = g
h(1)
1 · gh(2)

2 · · · gh(n)
n

Using the n rules gpi
i 7→ wi ,i , with wi ,i ∈ Gi+1 we can ensure that

0 ≤ h(i) < pi

Hence the order of G is
∏n

i=1 pi and we have a unique expression
for every element in the group

G is completely determined by the n primes pi , and the 2
(n
3

)
+

(n
2

)
numbers ei ,j ,k for 1 ≤ i ≤ j ≤ n, i ≤ k ≤ n, as they encode the
multiplication table

See chapter 9 of Robinson&Lennox, Sims, or Holt (Eick) for some
theoretical information on these presentations

The important point: in computational group theory, D8 has three
generators, not two



Collection example

Just to give a feel for it, here is an example:

〈a, b, c : a3 7→ 1, b2 7→ 1, c2 7→ 1, ba 7→ abc , ca 7→ ab, cb 7→ bc〉

(pi ) = (3, 2, 2) and

(ei ) =

. 0 0
. 1 1
. 1 0

 ,

. . .
. . 0
. . 0

 ,

. . .
. . .
. . 0



[1, 0, 1] · [2, 1, 1], that is a1b0c1 · a2b1c1:

acaabc = a(abc)abc = aab(ab)bc = aa(abc)bbc

= aaab(bc)bc = aaabb(bc)c = ()bbb() = b() = b



Reading finite soluble groups in GAP

Let’s create a finite soluble group in GAP:
gap> g := DihedralGroup(8);
<pc group of size 8 with 3 generators>

Not a very unique description!

Let’s figure out who is who. The generators are g.1, g.2, and g.3:
gap> List( [g.1,g.2,g.3], Order );
[ 2, 4, 2 ]

Now we know the subgroup generated by g.2 and g.3 is normal of
order 4, so g.3 better be g.22

gap> g.2^2 = g.3;
true

g.1 has order 2, so complements g.2, and so acts as inversion on it:
gap> g.2^g.1 = g.2^-1;
true



Reading off other results

Notice the center is exhibited:
gap> Center(g);
Group([ f3 ]);

Let’s multiply two random elements:
gap> x := Random(g); y := Random(g); x*y;
f1*f3
f2
f1*f2*f3

Let’s multiply not so random elements:
gap> g.2*g.1;
f1*f2*f3



GAP technicality

While permutation groups are all considered subgroups of
sufficiently large symmetric groups, each PcGroup and each
FpGroup is considered to be in its own universe, so if you aren’t
quite explicit about making subgroups, they are just different
groups:

gap> DihedralGroup(8) = DihedralGroup(8);
false
gap> IsomorphismGroups(DihedralGroup(8),DihedralGroup(8));

[ f1, f2, f3 ] -> [ f1, f2, f3 ]

gap> g = Group(g.1,g.2);
true



Group libraries

Besche, Eick, O’Brien catalogued the groups of order up to 2000

gap> SmallGroupsInformation(12);
There are 5 groups of order 12.
1 is of type 6.2.
2 is of type c12.
3 is of type A4.
4 is of type D12.
5 is of type 2^2x3.
The groups whose order factorises in at most 3 primes have
been classified by O. Hoelder. This classification is
used in the SmallGroups library.
gap> NumberSmallGroups(12);

5



Creation and identification

You can ask for groups to be created, and can ask for created
groups to be identified:

gap> h := SmallGroup(8,4);
<pc group of size 8 with 3 generators>
gap> StructureDescription(h);
"Q8"
gap> IdGroup( DihedralGroup(8) );
[ 8, 3 ]
gap> StructureDescription(SmallGroup(8,3));
"D8"



Searching

You can iterate through all small groups with:

gap> for n in [1..2000] do
> Print("Working on the ",NrSmallGroups(n)," groups
of order ",n,"\n");
> for k in [1..NrSmallGroups(n)] do
> sg:=SmallGroup(n,k);
> if mytestfunction(sg)
> then Error("Got one! ",[n,k]);
> fi; od; od;

gap> IdsOfAllSmallGroups( Size, [3,6..12],
> IsAbelian, false,
> g -> IsNormal(g,SylowSubgroup(g,3)),true);
[ [ 6, 1 ], [ 12, 1 ], [ 12, 4 ] ]



Of course there are caveats

Note that there are 49487365422 groups of order 1024, so it may
take a few millennia to complete your search

Far better is to study your problem and reduce the problem to
something manageable

Might as well have GAP search while you think though!

There are also libraries of transitive, primitive, perfect, and
irreducible groups



What if my group isn’t there?
You can construct your own PcGroups using finite presentations,
and if you are careful, GAP will recognize them as PcGroups:

gap> f := FreeGroup( 3 );
<free group on the generators [ f1, f2, f3 ]>
gap> g := f/[f.1^2, f.2^2/f.3, f.3^2, f.2^f.1/f.2^-1,
f.3^f.1/f.3, f.3^f.2/f.3 ];
<fp group on the generators [ f1, f2, f3 ]>
gap> Order(g);
8
gap> hom := IsomorphismPcGroup(g);
[ f1, f2, f3 ] -> [ f2, f1, f3 ]
gap> h := Range(hom);; IsPcGroup(h);

true

Notice how GAP decided to use a different composition series. If
you are very careful, you can avoid this using a very picky function:

gap> PcGroupFpGroup(g);
<pc group of size 8 with 3 generators>



Semidirect products and extensions

GAP has efficient methods for semidirect products and extensions
of finite soluble groups

gap> g:=ElementaryAbelianGroup(4);;
gap> a:=AutomorphismGroup(g);;
gap> ag:=SemidirectProduct(a,g);
<pc group with 4 generators>
gap> StructureDescription(ag);
"S4"

Extensions are a bit more technical, and I should probably cover
them separately. If you are bold just read the help (and the
papers):

??ExtensionRepresentatives



Exercises
Find the smallest group whose Sylow 2-subgroup is quaternion of
order 8, but such that the center of the Sylow subgroup is not
central in the whole group

Use structure description to understand the structure of this group.
Why is the example now obvious/why does the example exist?

Look up Glauberman’s “Z* theorem” and “ZJ theorem” and
notice that ZJ(Q8) is the center of Q8. These theorems show that
this example is actually typical.

How many non-abelian groups of order 27 and exponent 3 are
there?

Find the smallest group whose Sylow 3-subgroup is non-abelian of
order 27 and exponent 3, but whose center is not normal in the
whole group. Is the center of the Sylow subnormal in the whole
group?

(hard) If so, is there an example where it is not?



Summary

Finitely presented groups often do not have answers!

Polycyclically presented groups do!

There is even software to answer such questions!

You can access large libraries of precomputed groups!

You can construct your own!

The End


