PST, just-non-PT groups

Jack Schmidt

University of Kentucky

May 29, 2009

Outline

- Intro to just-non-? groups
- Examples of just-non-PT groups
- Classifications of just-non-PT groups
- Application and a surprising example
- Current work on PST, just-non-PT

Let ${\mathcal X}$ be a class of groups we want to understand

Study groups that are just barely not in ${\mathcal X}$

just-non- \mathcal{X} = not in \mathcal{X} , but every proper quotient is

Just-non-trivial groups = simple groups

1960: Newman: countable, soluble, just-non-abelian

- 1970: McCarthy and Wilson: just-non-finite
- 1973: Robinson: soluble, just-non-T
- 1982: Longobardi: finite, nilpotent, just-non-PT
- 2009: Working on finite, PST, just-non-PT

Examples of finite, non-cyclic, but every proper quotient is cyclic:

- Klein four, or any elementary abelian group of rank 2
- any dihedral group of order 2p
- A_4 the alternating group on four points, or any AGL(1,q)
- S_5 , or any symmetric group on at least five points
- the automorphism group of $M_{11} \times M_{11}$

Classification: finite, just-non-cyclic

- Three types:
 - Elementary abelian p-group of rank 2
 - 2 $H(n,p) \leq AGL(1,p^k)$ for n > 1, p prime, $k = Order(p \mod n)$
 - 3 S^k ≤ G ≤ Aut(S^k) = Aut(S) ≥ Sym(k) with G/S^k cyclic and acting transitively on {1,...,k}
- Second type takes an element of order n in GF(p^k)[×] acting on the additive group of GF(p^k).
- Standard example of just-non- \mathcal{X} : Semidirect of \mathcal{X} -group acting faithfully and irreducibly on some other group

Several classes of groups are defined based on various ideas of "normality" being equal in a group:

- **T-group** = subnormal subgroups are normal $H \leq \ldots \leq G \implies H \leq G$, that is gH = Hg for all $g \in G$
- **PT-group** = subnormal subgroups are permutable $H \leq \ldots \leq G \implies \langle g \rangle H = H \langle g \rangle$ for all $g \in G$
- **PST-group** = subnormal subgroups are Sylow permutable $H \leq ... \leq G \implies PH = HP$ for all Sylows $P \leq G$

Examples of PT-groups

• $T \implies PT \implies PST$

- Every abelian group is T, PT, and PST
- Every nilpotent group is PST
- Nilpotent T groups are abelian or Hamiltonian $(Q_8 \times O \times E)$
- Dihedral groups of order 2p are T, but not abelian
- $p \ltimes p^2$ is PT, but not T
- Dihedral group of order 8 is PST, but not PT

Example of just-non-PT groups

- Extraspecial groups like D₈ are finite, nilpotent, just-non-abelian, just-non-T, just-non-PT, PST
- D₈ Y C_{2ⁿ} is also finite, nilpotent, just-non-abelian, just-non-T, just-non-PT, PST
- $S_3 \times C_3$ is finite, supersoluble, just-non-T, just-non-PT, just-non-PST
- $(C_3 \ltimes C_9) \ltimes 7^3$ is finite, soluble, not supersoluble, just-non-PT, just-non-PST

Classifications

- Finite, soluble, PST, just-non-PT groups = just-non-modular *p*-groups of Longobardi 1982 (reduction shown to me by Matt Ragland)
- Finite, supersoluble, non-nilpotent, just-non-PT groups = some just-non-T types of Robinson 1973 (preliminary)
- Finite, soluble, non-supersoluble, just-non-PT groups = "standard type": PT-group ⋉ faithful simple module of dim ≥ 2
- Finite, insoluble, PST, just-non-PT seem within reach

Application

- T-group: $H \trianglelefteq N \trianglelefteq G \implies H \trianglelefteq G$
- PST-group: $H \trianglelefteq N \trianglelefteq G \implies H$ S-per G
- Soluble, PT-group: $H \trianglelefteq N \trianglelefteq G \implies H \text{ per } G$

- Soluble, PT-group proof used soluble, PST, just-non-PT groups
- Ramon Esteban-Romero found a nice counterexample for insoluble PT-groups

An interesting example

- Just-non-PT, *p*-group P with $M \leq P$ such that $H \leq M, H$ per $P \iff H \leq N_1 \leq \ldots \leq N_k = P$ $P = \langle a, b, c : a^{p^{k+1}} = b^{p^k} = c^p = [c, a] = 1, [a, b] = a^p, [c, b] = a^{p^k} \rangle$ G $M = \langle a, b \rangle$ t = c• |ZX| = |X/X'| = p and X'/ZX simple X'M X'/ZX = PSL(p,q) for $1 \equiv q \mod p, X = \langle t, X' \rangle$ The central product of X and P contains a subgroup $G = \langle X, M, tc^{-1} \rangle$
- G is finite, insoluble, PST, just-non-PT, and every subnormal subgroup of defect at most k is permutable

Local classification

Define:

$$N_{p}^{o} = \{G : H \leq O_{p}(G) \implies [O^{p}(G), H] \leq H\}$$
$$P_{p}^{o} = \{G : H \leq O_{p}(G) \implies H \text{ per } G\}$$
$$N_{p}^{*} = \{G : G/M \in N_{p}^{o}, \forall M \leq G\}$$
$$P_{p}^{*} = \{G : G/M \in P_{p}^{o}, \forall M \leq G\}$$

Then:

 $PST = N_p^*$ for all p and simple chief factors PT = PST and P_p^* for all pPST, just-non-PT are just-non- P_p^o for exactly one prime p

and P_q^* for all other primes q

Lattice and partial results

Suppose: G PST, just-non-PT group, O_p non-abelian, G_p a sylow of G, $D = O^{\infty}(G)$

- G/D is soluble PT, so has standard form
- $G/DO_{\infty} \leq Out(D)$, so has standard form
- $O_p(G) = O_\infty(G)$, "solvable part" is easy
- *D* is central product of quasi-simples, *G_p* acts diagonally on it
- *G* itself should be a nice central product of just-non-PT with *D* quasi-simple and PT
- O^p(G) [?] = O[∞](G), at least in the "central irreducible" case?

- Just-non-X groups are interesting when X is interesting
- PT used to have the same classifications as T and PST, but now is special
- We should understand just-non-PT groups, especially insoluble
- We need both concrete and conceptual classifications

The End