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Abstract: Probably the most powerful results in the theory of finite groups are the
Sylow theorems. Those who have studied for the Algebra prelim know they are used to
prove groups of certain orders cannot be simple. In fact, the Sylow subgroups control
the structure of a finite group much more strongly than just deciding non-simplicity.
This talk will describe work from the 19th and 20th centuries on the extent to which
Sylow subgroups determine a group up to isomorphism.



Outline

Hölder era results on square-free groups

Burnside era results on cyclic Sylow subgroups

Burnside and later results on Sylow 2-subgroups

Fancier classifications of Brauer and Gorenstein-Walter



Groups by their order

Lagrange’s theorem: the order of an element or a subgroup of a
group divides the order of the group

Cauchy’s theorem: if a prime divides the order of a group, then
the group has an element of that order

There are 18 groups of order up to 10, 1048 of order up to 100,
11 758 814 of order up to 1000, 49 910 529 484 of order up to 2000

Most groups have order 2n; the more times a prime divides,
the more groups there are

What if no prime squared divides the order?
Then we can describe them completely.

Next: Examples of nice groups



The nonabelian group of order 6

12

3

The symmetric group on three points
〈(1, 2), (1, 2, 3)〉

A semidirect product of 2 acting on 3
〈a, b : a2 = b3 = 1, ba = abb〉 ∼= 2n 3

The Coxeter group of type A2

〈a, c : a2 = c2 = 1, cac = aca〉

A matrix group over the integers, or over any nonzero ring
〈( 0 1

1 0 ) ,
(
0 −1
1 −1

)
〉

The group of symmetries of an equilateral triangle

〈
(
1 0
0 −1

)
,
(

−1/2
√
3/2

−
√
3/2 −1/2

)
〉



The nonabelian group of order 6

The important representations are

As a permutation group:
〈(1, 2), (1, 2, 3)〉.

A semidirect product of 2 acting on 3:
〈a, b : a2 = b3 = 1, ba = abb〉.

A matrix group over the field of three elements:
〈
(−1 0

0 1

)
, ( 1 1

0 1 )〉.



Dihedral groups of order 2p

As a permutation group:
〈(1, p − 1)(2, p − 2) · · · (p−1

2 , p+1
2 ), (1, 2, . . . , p)〉

As a semidirect product of 2 with p:
〈a, b : a2 = bp = 1, ba = abp−1〉

As a Coxeter group of type I2(p):
〈a, c : a2 = c2 = 1, c(ac)(p−1)/2 = a(ca)(p−1)/2〉

As a matrix group over the finite field of size p:
〈
(−1 0

0 1

)
, ( 1 1

0 1 )〉

As a symmetry group of a regular p-gon:

〈
(
1 0
0 −1

)
,
(

cos(2π/p) sin(2π/p)
− sin(2π/p) cos(2π/p)

)
〉



Dihedral groups of order 14

6

5

43

2

1
7

As a permutation group:
〈(1, 6)(2, 5)(3, 4), (1, 2, 3, 4, 5, 6, 7)〉
〈(1, 6)(2, 5)(3, 4), (1, 2, 3, 4, 5, 6, 7)〉

As a semidirect product of 2 with 7:
〈a, b : a2 = b7 = 1, ba = ab6〉

As a Coxeter group of type I2(7):
〈a, c : a2 = c2 = 1, cacacac = acacaca〉

As a matrix group over the finite field of size 7:
〈
(−1 0

0 1

)
, ( 1 1

0 1 )〉

As a symmetry group of a regular heptagon:

〈
(
1 0
0 −1

)
,
(

cos(2π/7) sin(2π/7)
− sin(2π/7) cos(2π/7)

)
〉



Important representations of D2p

As a permutation group:
〈(1, p − 1)(2, p − 2) · · · (p−1

2 , p+1
2 ), (1, 2, . . . , p)〉

As a semidirect product of 2 with p:
〈a, b : a2 = bp = 1, ba = abp−1〉
As a matrix group over the finite field of size p:
〈
(−1 0

0 1

)
, ( 1 1

0 1 )〉

Important representations of D14

As a permutation group:
〈(1, 6)(2, 5)(3, 4), (1, 2, 3, 4, 5, 6, 7)〉
As a semidirect product of 2 with 7:
〈a, b : a2 = b7 = 1, ba = ab6〉
As a matrix group over the finite field of size 7:
〈
(−1 0

0 1

)
, ( 1 1

0 1 )〉



Set z to be a primitive root mod p

AGL(1,p)

As a permutation group, it is NSp(〈(1, 2, ..., p)〉),
〈(1, z , z2, z3, . . . , zp−2) mod p, (1, 2, . . . , p)〉
As a semidirect product of p − 1 with p:
〈a, b : ap−1 = bp = 1, ba = abz〉
As a matrix group over the finite field of size p: 〈( z 0

0 1 ) , (
1 1
0 1 )〉

AGL(1,7)

As a permutation group:
〈(1, 3, 2, 6, 4, 5), (1, 2, 3, 4, 5, 6, 7)〉
As a semidirect product of 6 with 7:
〈a, b : a6 = b7 = 1, ba = ab3〉
As a matrix group over the field of 7 elements: 〈( 3 0

0 1 ) , (
1 1
0 1 )〉



Here m, n, z are positive integers, 1 = gcd((z − 1)n,m), and
1 ≡ zn mod n

Metacyclic groups M(m,n,z)

As a permutation group:
〈(1, z , z2, z3, . . . , zn−1) · · · (a, az , az2, . . . , azn−1) mod m,
(1, 2, . . . ,m)〉
As a semidirect product of n with m:
〈a, b : an = bm = 1, ba = abz〉
As a matrix group over the ring Z/mZ: 〈( z 0

0 1 ) , (
1 1
0 1 )〉

Examples

M(3, 7, 2) = 〈(1, 2, 4)(3, 6, 5), (1, 2, 3, 4, 5, 6, 7)〉
M(2, 7, 6) = D2·7 = 〈(1, 6)(2, 5)(3, 4), (1, 2, 3, 4, 5, 6, 7)〉
M(6, 7, 3) = AGL(1, 7) = 〈(1, 3, 2, 6, 4, 5), (1, 2, 3, 4, 5, 6, 7)〉



Classification of square-free groups

If G is a group whose order is not divisible by the square of any prime:

Frobenius 1893: G is solvable

Hölder 1895: G is isomorphic to a metacyclic group M(m, n, z)

Proof: Let H = [G ,G ], K = [H,H], and L = [K ,K ]. Both H/K
and K/L are abelian of square-free order, so cyclic. Since K/L is
cyclic, its automorphism group is cyclic, and so H = [G ,G ] central-
izes K/L. But then (H/L)/(K/L) is cyclic and K/L is contained
in the center of H/L, so we can apply a well-known prelim prob-
lem: H/L is abelian. That means K = L, and since G is solvable,
K = L = 1 and H = [G ,G ] itself is cyclic.

Take b to be a generator of [G ,G ], and a to be the preimage of a
generator of G/[G ,G ], then a−1ba = bz for some z .

Burnside 1905 generalized this, but first we need Sylow subgroups:



Sylow subgroups

A p-group is a group whose order is a power of p

Theorem: If H is a p-subgroup of G and p divides [G : H],
then p divides [NG (H) : H]

Every p-subgroup of G is contained in a Sylow p-subgroup P,
that is P is a p-group and [G : P] is coprime to p

All Sylow p-subgroups are conjugate

Burnside 1905 showed that if all Sylow subgroups are cyclic,
then the group is isomorphic to the metacyclic group M(m, n, z)



How much can a single Sylow tell us?

What if we only know the Sylow 2-subgroup P?

Well, for any group N of odd order P ×N has Sylow 2-subgroup P

For any f : P → Aut(N), also P nf N has Sylow 2-subgroup P

While this is a lot of groups, for some P they are the only groups

If G = P n N for a Sylow p-subgroup P,
then we say G is p-nilpotent and we consider it well known

If G has order twice an odd number, that is |G | = 4k + 2,
then G has a subgroup H of index 2. . . , so G is 2-nilpotent.



Cyclic Sylow 2-subgroup ⇒ 2-nilpotent

Burnside showed that if a group has a cyclic Sylow 2-subgroup,
then it is 2-nilpotent

Proof: Suppose G has a cyclic Sylow 2-subgroup of order 2n. If
n = 0, there is nothing to prove. Consider the permutation action
of G on itself. An element of order 2n is a product of an odd number
of 2n-cycles, so is an odd permutation. Hence H = G ∩ An 6= G
is a subgroup of index 2 in G. H has a cyclic Sylow 2-subgroup of
order 2n−1, so by induction H = P0 nN for P0 a cyclic subgroup of
order 2n−1 and N a normal subgroup of H of odd order. Since N is
the unique maximal subgroup of odd order in H, N is also normal
in G . Taking P to be any Sylow 2-subgroup containing P0, one has
G = P n N.

If a group has a cyclic Sylow 2-subgroup, then it is solvable.

All finite simple groups have a cyclic Sylow p-subgroup for some p



Other Sylows that force 2-nilpotency

Say that P is 2-nilpotent forcing if the only groups containing P
as a Sylow 2-subgroup are 2-nilpotent

Burnside: If P is cyclic, then P is 2-nilpotent forcing

Burnside: If P is unbalanced abelian (decomposition into cyclic
summands has no repeated sizes), then P is 2-nilpotent forcing.
Example: 16× 4× 2

Yoshida 1978: If Aut(P) is a 2-group and P has no quotient
isomorphic to D8, then P is 2-nilpotent forcing

Conversely, if P is 2-nilpotent forcing, then Aut(P) is a 2-group



Not all groups are 2-nilpotent!

The alternating group on four points (A4)

As permutation group:
〈(1, 2, 3), (1, 2)(3, 4), (1, 4)(2, 3)〉
As semidirect product 3n (2× 2):
〈a, x , y : a3 = x2 = y2 = 1, xa = ay , ya = axy , yx = xy〉
As matrix group, over the field of 4 elements, with z a
primitive 3rd root of unity:
〈( z 0

0 1 ) , (
1 1
0 1 ) , (

1 z
0 1 )〉

The normal subgroups of A4 are 1, K4, and A4. The only one of
odd order is 1. Hence A4 is not 2-nilpotent.



Fancier version of A4

The Eisenstein integers form a nice ring, Z[ω] where ω2+ω+1 = 0
and ω is a primitive 3rd root of unity. The ideal P = 2R is prime
and R/P is a field with 4 elements. R/Pn is a ring with 4n elements.
Additively it is Z/2nZ× Z/2nZ with basis {1, ω}.

Define a new group A4(n)

As a semidirect product 3n (2n × 2n):
〈a, x , y : a3 = x2

n
= y2

n
= 1, xa = ay , ya = axy , yx = xy〉

As a matrix group over R/Pn:
〈( ω 0

0 1 ) , (
1 1
0 1 ) , (

1 ω
0 1 )〉 ≤ AGL(1,R/Pn)

The normal subgroups of A4(n) are K4(i) = 〈x2i , y2i 〉 for 1 ≤ i ≤ n
and A4(n). The only one of odd order is K4(n) = 1, so A4(n) is
not 2-nilpotent.



A classification for P = 2n × 2n

Let N be the largest normal subgroup of G of odd order.

Note A4(n) has Sylow 2-subgroup 2n × 2n

Brauer 1964: If n ≥ 2 and G has Sylow 2-subgroup P = 2n × 2n,
then G/N ∼= P or G/N ∼= A4(n)

G is 2-nilpotent iff G/N = P

For some P, we know G is 2-nilpotent, so we know G/N = P.
For other P like 2n × 2n, this cannot work.

For a given P, we want a list of all G/N!



More non 2-nilpotent groups

The special linear group SL(n,q) is the group of all n × n
matrices of determinant 1 over a field of size q

SL(2, 3) = 3n Q8 has the 2-group on the wrong side

The projective special linear group PSL(n,q) is the quotient
group of SL(n,q) by its center

PSL(2, 3) = 3n (2× 2) = A4 is not 2-nilpotent either

PSL(2, 5) = A5 also has P = 2× 2 and is not 2-nilpotent

These are more or less the only G/N with P = 2× 2:

Gorenstein&Walter 1965: for P = 2× 2, either G/N = P or

G/N = f0 n d0 n PSL(2, pf )

for p, f0, d0 odd, f0 divides f , d0 divides pf − 1, pf ≡ ±3 mod 8



Further classifications

Gorenstein&Walter 1965: for dihedral P, either G/N = P or
G/N = f0 n d0 n PSL(2, pf ) for p, f0, d0 odd, f0 divides f and d0
divides pf − 1

Gorenstein’s 1970 exercise: for quaternion P, either G/N = P
or G/N = f0 n d0 n SL(2, pf ) for p, f0, d0 odd, f0 divides f and d0
divides pf − 1

Many other classifications for nice P, but they restrict G (maybe
G is generated by its Sylow 2-subgroups, or G is simple, etc.)

These are combined inductively with classifications based on
involution centralizers

A substantial part of the classification of finite simple groups


	All sylows cyclic

