MA162: Finite mathematics

Jack Schmidt

University of Kentucky

January 26, 2010

Schedule:

- HW A2 is due Monday, Feb 1st, 2010.
 Deadline: notify me by email of need for alternate exam
- HW A3 is due Sunday, Feb 7th, 2010.
- Exam 1 is Monday, Feb 8th, 5:00pm-7:00pm.
 Practice exam now available
- HW B1 is due Monday, Feb 22nd, 2010.

Today we will cover 2.1, systems of linear equations.

• Very little in life is simple. It is rare you only have one thing due.

- In many situations, there are three limiting factors:
 - Time You need people to do it
 - Money Supplies don't come cheap
 - Space You need somewhere to work
- Real decisions require you to balance several inputs, and maximize at least one output, profit

2.1: The word problem

- B.B. King LLC now employees part-time beaders to manufacture beaded bracelets
- You use an ingenious three step process: **thread** the beads, **crimp** the wire, **attach** the clasp
- You sell three types of bracelets: Aurora, Babylon, and Camelot
- Your threader works 3 hours a week, your crimper 5 hours a week, and your attacher works 4 hours a week
- Time in minutes to complete each step for each type:

	Aurora	Babylon	Camelot	Available
Thread	2	1	1	180
Crimp	1	3	2	300
Attach	2	1	2	240

2.1: How do you keep them busy?

- You were smart enough to schedule: your Threader to work Mondays, your Crimper to work Tuesdays, and your Attacher to work Wednesdays
- But how many of each type should each person make?
- If different people make different amounts, then you have surplus partially made bracelets.
- Everybody needs to make the same amount of each, but it takes people different times to do each.
- How does one find the balance?

2.1: Make a bad guess?

- One option is to just guess. Some managers do this.
- "Why not just make all Babylons?"
- The Threader can make 180 Babylon bracelets each Monday.
- The Crimper can make 100 Babylon bracelets each Tuesday, leaving 80 uncrimped threads.
- The Attacher has time to attach 240 Babylon bracelets, but only got 100 bracelets from the Crimper, so 2 hours and 20 minutes wasted

	Aurora	Babylon	Camelot	Available
Thread	2	1	1	180
Crimp	1	3	2	300
Attach	2	1	2	240

2.1: Use algebra

- Suppose you tell your employees to make A Aurora bracelets, B
 Babylon bracelets, and C Camelot bracelets
 Here A, B, and C are specific, but unknown to us, numbers we want to find
- The Threader spends 2A + B + C minutes threading, out of his 180 minutes.
- The Crimper spends A + 3B + 2C minutes crimping, out of his 300 minutes.
- The Attacher spends 2A + B + 2C minutes attaching, out of his 240 minutes.

	Aurora	Babylon	Camelot	Available
Thread	2	1	1	180
Crimp	1	3	2	300
Attach	2	1	2	240

Threader:	2 <i>A</i>	+ B	+ C	= 180
Crimper:	Α	+3B	+2C	= 300
Attacher:	2 <i>A</i>	+ B	+2C	= 240

- Now we want to solve these equations, but perhaps this one is a hard place to start
- Suppose the Attacher offers to work 20 hours (so effectively he is no longer a contraint)
- Suppose there is a safety recall on the Camelot (twin axle bracelets were extra safe, until you added the sword)
- The new equations are simpler:

Threader:	2A	+ B	= 180
Crimper:	A	+3B	

Threader:	2 <i>A</i>	+ B	+ C	= 180
Crimper:	Α	+3B	+2C	= 300
Attacher:	2 <i>A</i>	+ B	+2C	= 240

- Now we want to solve these equations, but perhaps this one is a hard place to start
- Suppose the Attacher offers to work 20 hours (so effectively he is no longer a contraint)
- Suppose there is a safety recall on the Camelot (twin axle bracelets were extra safe, until you added the sword)
- The new equations are simpler:

Threader:	2A	+ B	= 180
Crimper:	A	+3B	

Threader:	2 <i>A</i>	+ B	+ C	= 180
Crimper:	Α	+3B	+2C	= 300
Attacher:	2 <i>A</i>	+ B	+2C	= 240

- Now we want to solve these equations, but perhaps this one is a hard place to start
- Suppose the Attacher offers to work 20 hours (so effectively he is no longer a contraint)
- Suppose there is a safety recall on the Camelot (twin axle bracelets were extra safe, until you added the sword)
- The new equations are simpler:

Threader:	2 <i>A</i>	+ B	= 180
Crimper:	A	+3B	

• Now we just state that we want to use all the time:

Threader:	2 <i>A</i>	+ B	+ C	= 180
Crimper:	Α	+3B	+2C	= 300
Attacher:	2 <i>A</i>	+ B	+2C	= 240

- Now we want to solve these equations, but perhaps this one is a hard place to start
- Suppose the Attacher offers to work 20 hours (so effectively he is no longer a contraint)
- Suppose there is a safety recall on the Camelot (twin axle bracelets were extra safe, until you added the sword)
- The new equations are simpler:

 Threader:
 2A + B = 180

 Crimper:
 A + 3B = 300

Threader:	2 <i>A</i>	+ B	+ C	= 180
Crimper:	Α	+3B	+2C	= 300
Attacher:	2 <i>A</i>	+ B	+2C	= 240

- Now we want to solve these equations, but perhaps this one is a hard place to start
- Suppose the Attacher offers to work 20 hours (so effectively he is no longer a contraint)
- Suppose there is a safety recall on the Camelot (twin axle bracelets were extra safe, until you added the sword)
- The new equations are simpler:

Threader:	2 <i>A</i>	+ B	= 180
Crimper:	Α	+3B	= 300

We start solving:

Threader: 2A + B = 180 Crimper: A + 3B = 300

- We write A = 300 3B using the second equation
- So A really is just (300 3B)
- so 2A + B really is just 2(300 - 3B) + B = 600 - 6B + B = 600 - 5B
- so 180 = 2A + B = 600 5B

• so 5B = 600 - 180 = 420, so $B = \frac{420}{5} = 84$ Babylon bracelets

• We start solving:

Threader:	2 <i>A</i>	+ B	= 180
Crimper:	Α	+3B	= 300

• We write A = 300 - 3B using the second equation

- So A really is just (300 3B)
- so 2A + B really is just 2(300 - 3B) + B = 600 - 6B + B = 600 - 5E
- so 180 = 2A + B = 600 5B

• so 5B = 600 - 180 = 420, so $B = \frac{420}{5} = 84$ Babylon bracelets

• We start solving:

Threader:	2 <i>A</i>	+ B	= 180
Crimper:	Α	+3B	= 300

- We write A = 300 3B using the second equation
- So A really is just (300 3B)
- so 2A + B really is just 2(300 - 3B) + B = 600 - 6B + B = 600 - 5B
- so 180 = 2A + B = 600 5B

• so 5B = 600 - 180 = 420, so $B = \frac{420}{5} = 84$ Babylon bracelets

- We start solving:
 - Threader:
 2A + B = 180

 Crimper:
 A + 3B = 300
- We write A = 300 3B using the second equation
- So A really is just (300 3B)
- so 2A + B really is just 2(300 - 3B) + B = 600 - 6B + B = 600 - 5B

• so 180 = 2A + B = 600 - 5B

• so 5B = 600 - 180 = 420, so $B = \frac{420}{5} = 84$ Babylon bracelets

- We start solving:
 - Threader:
 2A + B = 180

 Crimper:
 A + 3B = 300
- We write A = 300 3B using the second equation
- So A really is just (300 3B)
- so 2A + B really is just 2(300 - 3B) + B = 600 - 6B + B = 600 - 5B
- so 180 = 2A + B = 600 5B

• so 5B = 600 - 180 = 420, so $B = \frac{420}{5} = 84$ Babylon bracelets

- We start solving:
 - Threader:
 2A + B = 180

 Crimper:
 A + 3B = 300
- We write A = 300 3B using the second equation
- So A really is just (300 3B)
- so 2A + B really is just 2(300 - 3B) + B = 600 - 6B + B = 600 - 5B
- so 180 = 2A + B = 600 5B
- so 5B = 600 180 = 420, so $B = \frac{420}{5} = 84$ Babylon bracelets

- We start solving:
 - Threader:
 2A + B = 180

 Crimper:
 A + 3B = 300
- We write A = 300 3B using the second equation
- So A really is just (300 3B)
- so 2A + B really is just
 2(300 3B) + B = 600 6B + B = 600 5B
- so 180 = 2A + B = 600 5B
- so 5B = 600 180 = 420, so $B = \frac{420}{5} = 84$ Babylon bracelets
- so $A = 300 3B = 300 3 \cdot 84 = 48$ Aurora bracelets

- We claim that B = 84 and A = 48 use up all the minutes exactly
- We should probably check (before telling the entire company)
- The Threader needs 2 · 48 = 96 minutes to thread the Auroras and 1 · 84 = 84 minutes to thread the Babylons A total of 96 + 84 = 180 minutes!
- The Crimper needs 1 · 48 = 48 minutes to crimp the Auroras and 3 · 84 = 252 minutes to crimp the Babylons A total of 48 + 252 = 300 minutes!
- The Attacher needs 2 · 48 = 96 minutes to attach the Auroras and 1 · 84 = 84 minutes to attach the Babylons A total of 96 + 84 = 180 minutes, much less than 20 hours

		Aurora	Babylon	Camelot	Available
	Thread	2	1	1	180
	Crimp	1	3	2	300
	Attach	2	1	2	≤ 1200

- We claim that B = 84 and A = 48 use up all the minutes exactly
- We should probably check (before telling the entire company)
- The Threader needs 2 · 48 = 96 minutes to thread the Auroras and 1 · 84 = 84 minutes to thread the Babylons
 A total of 96 + 84 = 180 minutes!
- The Crimper needs 1 · 48 = 48 minutes to crimp the Auroras and 3 · 84 = 252 minutes to crimp the Babylons A total of 48 + 252 = 300 minutes!
- The Attacher needs 2 · 48 = 96 minutes to attach the Auroras and 1 · 84 = 84 minutes to attach the Babylons A total of 96 + 84 = 180 minutes, much less than 20 hours

	Aurora	Babylon	Camelot	Available
Thread	2	1	1	180
Crimp	1	3	2	300
Attach	2	1	2	≤ 1200

- We claim that B = 84 and A = 48 use up all the minutes exactly
- We should probably check (before telling the entire company)
- The Threader needs 2 · 48 = 96 minutes to thread the Auroras and 1 · 84 = 84 minutes to thread the Babylons
 A total of 96 + 84 = 180 minutes!
- The Crimper needs 1 · 48 = 48 minutes to crimp the Auroras and 3 · 84 = 252 minutes to crimp the Babylons A total of 48 + 252 = 300 minutes!
- The Attacher needs 2 · 48 = 96 minutes to attach the Auroras and 1 · 84 = 84 minutes to attach the Babylons A total of 96 + 84 = 180 minutes, much less than 20 hours

	Aurora	Babylon	Camelot	Available
Thread	2	1	1	180
Crimp	1	3	2	300
Attach	2	1	2	≤ 1200

- We claim that B = 84 and A = 48 use up all the minutes exactly
- We should probably check (before telling the entire company)
- The Threader needs 2 · 48 = 96 minutes to thread the Auroras and 1 · 84 = 84 minutes to thread the Babylons
 A total of 96 + 84 = 180 minutes!
- The Crimper needs 1 · 48 = 48 minutes to crimp the Auroras and 3 · 84 = 252 minutes to crimp the Babylons A total of 48 + 252 = 300 minutes!
- The Attacher needs 2 · 48 = 96 minutes to attach the Auroras and 1 · 84 = 84 minutes to attach the Babylons
 A total of 96 + 84 = 180 minutes, much less than 20 hours

	Aurora	Babylon	Camelot	Available
Thread	2	1	1	180
Crimp	1	3	2	300
Attach	2	1	2	≤ 1200

Lab time: Activity 2.1a

- Form groups of 1-4 people and begin working on activity 2.1a
- You will be given a **short quiz** on the material at the end
- Collaboration is encouraged, but write down your own thoughts
- Write neatly enough for your own notes, but you will not hand in anything but the quiz
- You may also try to solve the full BBKing problem:

	Aurora	Babylon	Camelot	Available
Thread	2	1	1	180
Crimp	1	3	2	300
Attach	2	1	2	240

- We've all heard "There's no such thing as a dumb question"
- However, there are definitely "unreasonable demands"
- Not all equations can be solved; inconsistent
- Sometimes equations are not enough to find the solution; free variables
- These "special" cases are called degenerate

• Your mission, should you choose to accept it:

Please determine the number x such that x - x = 4.
 x - x = 0 not 4, there are NO solutions

• Please determine all numbers x such that 0 = 1. Changing x is not going to make 0 = 1, NO solutions

Please determine all numbers x such that x = x.
 All x work, x is free

Please determine all pairs of numbers (x, y) such that x = 3.
 All y work, y is free, (x = 3, y is free)

- Please determine the number x such that x x = 4.
 x x = 0 not 4, there are NO solutions
- Please determine all numbers x such that 0 = 1.
 Changing x is not going to make 0 = 1, NO solutions
- Please determine all numbers x such that x = x.
 All x work, x is free
- Please determine all pairs of numbers (x, y) such that x = 3.
 All y work, y is free, (x = 3, y is free)

- Please determine the number x such that x x = 4. x - x = 0 not 4, there are **NO** solutions
- Please determine all numbers x such that 0 = 1.
 Changing x is not going to make 0 = 1, NO solutions
- Please determine all numbers x such that x = x.
 All x work, x is free
- Please determine all pairs of numbers (x, y) such that x = 3.
 All y work, y is free, (x = 3, y is free)

- Please determine the number x such that x x = 4. x - x = 0 not 4, there are **NO** solutions
- Please determine all numbers x such that 0 = 1. Changing x is not going to make 0 = 1, NO solutions
- Please determine all numbers x such that x = x.
 All x work, x is free
- Please determine all pairs of numbers (x, y) such that x = 3.
 All y work, y is free, (x = 3, y is free)

- Your mission, should you choose to accept it:
- Please determine the number x such that x x = 4. x - x = 0 not 4, there are **NO** solutions
- Please determine all numbers x such that 0 = 1. Changing x is not going to make 0 = 1, NO solutions
- Please determine all numbers x such that x = x.
 All x work, x is free
- Please determine all pairs of numbers (x, y) such that x = 3.
 All y work, y is free, (x = 3, y is free)

- Please determine the number x such that x x = 4. x - x = 0 not 4, there are **NO** solutions
- Please determine all numbers x such that 0 = 1. Changing x is not going to make 0 = 1, NO solutions
- Please determine all numbers x such that x = x. All x work, x is free
- Please determine all pairs of numbers (x, y) such that x = 3.
 All y work, y is free, (x = 3, y is free)

- Your mission, should you choose to accept it:
- Please determine the number x such that x x = 4. x - x = 0 not 4, there are **NO** solutions
- Please determine all numbers x such that 0 = 1. Changing x is not going to make 0 = 1, NO solutions
- Please determine all numbers x such that x = x.
 All x work, x is free
- Please determine all pairs of numbers (x, y) such that x = 3.
 All y work, y is free, (x = 3, y is free)

- Your mission, should you choose to accept it:
- Please determine the number x such that x x = 4. x - x = 0 not 4, there are **NO** solutions
- Please determine all numbers x such that 0 = 1. Changing x is not going to make 0 = 1, NO solutions
- Please determine all numbers x such that x = x.
 All x work, x is free
- Please determine all pairs of numbers (x, y) such that x = 3.
 All y work, y is free, (x = 3, y is free)

- Your mission, should you choose to accept it:
- Please determine the number x such that x x = 4. x - x = 0 not 4, there are **NO** solutions
- Please determine all numbers x such that 0 = 1. Changing x is not going to make 0 = 1, NO solutions
- Please determine all numbers x such that x = x.
 All x work, x is free
- Please determine all pairs of numbers (x, y) such that x = 3.
 All y work, y is free, (x = 3, y is free)

• Suicide missions are rarely labelled as such

• Determine all solutions to the system of simultaneous equations: 3x = 9 and 4x = 5

x = 3 from the first, but $4 \cdot 3 = 12$ not 5; **NO** solution

• Determine all pairs of numbers (x, y) such that 2x + 3y = 5 and 4x + 6y = 2

4x + 6y is twice as big as 2x + 3y, but 2 is not twice as big as 5; **NO** solution

• Determine all pairs of numbers (x, y) such that 4x + 3y + 1 = 3x + 3y + 4

- Suicide missions are rarely labelled as such
- Determine all solutions to the system of simultaneous equations: 3x = 9 and 4x = 5

x = 3 from the first, but $4 \cdot 3 = 12$ not 5; **NO** solution

• Determine all pairs of numbers (x, y) such that 2x + 3y = 5 and 4x + 6y = 2

4x + 6y is twice as big as 2x + 3y, but 2 is not twice as big as 5; **NO** solution

• Determine all pairs of numbers (x, y) such that 4x + 3y + 1 = 3x + 3y + 4

- Suicide missions are rarely labelled as such
- Determine all solutions to the system of simultaneous equations: 3x = 9 and 4x = 5
 - x = 3 from the first, but $4 \cdot 3 = 12$ not 5; **NO** solution
- Determine all pairs of numbers (x, y) such that 2x + 3y = 5 and 4x + 6y = 2

4x + 6y is twice as big as 2x + 3y, but 2 is not twice as big as 5; **NO** solution

• Determine all pairs of numbers (x, y) such that 4x + 3y + 1 = 3x + 3y + 4

- Suicide missions are rarely labelled as such
- Determine all solutions to the system of simultaneous equations: 3x = 9 and 4x = 5

x = 3 from the first, but $4 \cdot 3 = 12$ not 5; **NO** solution

• Determine all pairs of numbers (x, y) such that 2x + 3y = 5 and 4x + 6y = 2

4x + 6y is twice as big as 2x + 3y, but 2 is not twice as big as 5; **NO** solution

• Determine all pairs of numbers (x, y) such that 4x + 3y + 1 = 3x + 3y + 4

- Suicide missions are rarely labelled as such
- Determine all solutions to the system of simultaneous equations: 3x = 9 and 4x = 5

x = 3 from the first, but $4 \cdot 3 = 12$ not 5; **NO** solution

• Determine all pairs of numbers (x, y) such that 2x + 3y = 5 and 4x + 6y = 2

4x + 6y is twice as big as 2x + 3y, but 2 is not twice as big as 5; **NO** solution

Determine all pairs of numbers (x, y) such that
 4x + 3y + 1 = 3x + 3y + 4

- Suicide missions are rarely labelled as such
- Determine all solutions to the system of simultaneous equations: 3x = 9 and 4x = 5

x = 3 from the first, but $4 \cdot 3 = 12$ not 5; **NO** solution

• Determine all pairs of numbers (x, y) such that 2x + 3y = 5 and 4x + 6y = 2

4x + 6y is twice as big as 2x + 3y, but 2 is not twice as big as 5; **NO** solution

• Determine all pairs of numbers (x, y) such that 4x + 3y + 1 = 3x + 3y + 4

- Suicide missions are rarely labelled as such
- Determine all solutions to the system of simultaneous equations: 3x = 9 and 4x = 5

x = 3 from the first, but $4 \cdot 3 = 12$ not 5; **NO** solution

• Determine all pairs of numbers (x, y) such that 2x + 3y = 5 and 4x + 6y = 2

4x + 6y is twice as big as 2x + 3y, but 2 is not twice as big as 5; **NO** solution

• Determine all pairs of numbers (x, y) such that 4x + 3y + 1 = 3x + 3y + 4

Lab time: Activity 2.1b

- Form groups of 1-4 people and begin working on activity 2.1b
- You will be given a **short quiz** on the material at the end
- Collaboration is encouraged, but write down your own thoughts
- Write neatly enough for your own notes, but you will not hand in anything but the quiz
- You may also try #13 in section 2.1 of the textbook (easy version of exam question)
 Find the values of k such that

$$2x - y = 3, 4x + ky = 4$$

is inconsistent. k = ?

• Solve the system of equations:

$$x +0y +2z = 3$$

$$y -2z = 4$$

$$z = 5$$

Or written more compactly, x + 2z = 3, y - 2z = 4, z = 5.

• Solve the system of simultaneous equations:

$$x +0y +0z = 3$$
$$y +0z = 4$$
$$z = 5$$

Or written more compactly, x = 3, y = 4, z = 5.