MA162: Finite mathematics

Jack Schmidt

University of Kentucky

February 23, 2011

SCHEDULE:

- HW B2 is due Monday, Feb 28th, 2011.
- HW B3 is due Sunday, Mar 6th, 2011.
- Exam 2 is Monday, Mar 7th, 5:00pm-7:00pm.
- Alternate request form on MathClass.org due today

Today we will cover 3.3: Graphical method of solving LPP

Exam 2: Overview

- 35% Ch 2, Matrix arithmetic (HWB1):
 - Sizes, Addition, subtraction, multiplication by a number, matrix-matrix multiplication, matrix to a power
 - Matrix inverse (2 \times 2 and 3 \times 3); Solving system given inverse
- 30% Ch 3, Two-variable linear programs (HWB2):
 - Setting up a linear programming problem
 - Solving using the graphical method
- 35% Ch 4, Simplex algorithm (HWB3)

3.3: Linear programming problems

- An LPP has three parts:
 - The variables (the business decision to be made)
 - The inequalities (the laws, constraints, rules, and regulations)
 - The objective (maximize profit, minimize cost)
- If there are only two variables, they are easy to solve!
- Both the maximum and minimum will occur on a corner.

3.3: Example 1 from Monday

• Variables:

- $X = \mbox{the number of water bottles to make each day}$
- $Y=\mbox{the number of OSARPs}$ to make each day

Constraints:

$26X + 62Y \le 300$	(3D printer time)
$60X + 30Y \le 240$	(KnitBot time)
$20X + 40Y \le 240$	(Human time)
$26X - 28Y \le 0$	(Union req.)
$20X + 40Y \le 240 \\ 26X - 28Y \le 0$	(Human time) (Union req.)

and $X \ge 0$, $Y \ge 0$

• Objective:

Maximize the profit P = 10X + 12Y

3.2: Example 2 from Monday

• Variables:

- X = number of pills of brand A
- Y = number of pills of brand B

• Constraints:

$$\begin{array}{ll} 40X + 10Y \geq 2400 & (Iron) \\ 10X + 15Y \geq 2100 & (B1) \\ 5X + 15Y \geq 1500 & (B2) \end{array}$$

and $X \ge 0$, $Y \ge 0$

• Objective:

Minimize cost C = 0.06X + 0.08Y

Example 3 from Monday

• Variables:

- X = Number of engines from P1 to A1
- Y = Number of engines from P1 to A2

80 - X = Number of engines from P2 to A1 (the rest of A1's demand)

70 - Y = Number of engines from P2 to A2 (the rest of A2's demand)

• Constraints:

$$\begin{array}{lll} X + Y \leq 100 & (P1 \text{ max production}) \\ X + Y \geq 40 & (P2 \text{ max production}) \\ X & \leq 80 & (\text{sanity, A1 max demand}) \\ Y \leq 70 & (\text{sanity, A2 max demand}) \end{array}$$

and $X \ge 0$, $Y \ge 0$

• Objective:

minimize shipping cost C = 14500 - 20X - 10Y

