MA162: Finite mathematics

Jack Schmidt

University of Kentucky

September 19, 2011

Schedule:

- HW 2.5-2.6 are due Friday, Sep 23rd, 2011.
- Exam 1 is Monday, Sep 26th, 5:00pm-7:00pm in CB106.
- Alternate exam requests due today. Seats only while supplies last.

Today we will cover 2.5 and 2.6: matrix multiplication and division

2.5: Sizes for multiplication

- To multiply $A \cdot B$ we take the rows of A and multiply them against the columns of B
- We need each row of A to be the same length as each column of B They need to "match up"
- In other words, to multiply A and B, the number of columns of A must be equal to the number of rows of B
- 3 × 4 times 4 × 5 is good
 3 × 4 times 5 × 6 is not good, the rows of A have only 4 numbers, but the columns of B have 5
- If A is 3 × 4 and B is 4 × 5, then each little multiplication adds up 4 products

(Rows \times Columns)

2.5: Size for multiplication

• How big is $A \cdot B$?

 If A is 3 × 2 and B is 2 × 4 then A · B is 3 × 4: Each "little multiplication" adds up 2 products, and there are 3 rows of products, and 4 columns

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \cdot \begin{bmatrix} 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 \end{bmatrix}$$
$$= \begin{bmatrix} 1 \cdot 7 + 2 \cdot 11 & 1 \cdot 8 + 2 \cdot 12 & 1 \cdot 9 + 2 \cdot 13 & 1 \cdot 10 + 2 \cdot 14 \\ 3 \cdot 7 + 4 \cdot 11 & 3 \cdot 8 + 4 \cdot 12 & 3 \cdot 9 + 4 \cdot 13 & 3 \cdot 10 + 4 \cdot 14 \\ 5 \cdot 7 + 6 \cdot 11 & 5 \cdot 8 + 6 \cdot 12 & 5 \cdot 9 + 6 \cdot 13 & 5 \cdot 10 + 6 \cdot 14 \end{bmatrix}$$
$$= \begin{bmatrix} 29 & 32 & 35 & 38 \\ 65 & 72 & 79 & 86 \\ 101 & 112 & 123 & 134 \end{bmatrix}$$

• Two clients own some stocks:

	IBM	Google	Toyota	Texaco
Bill	18	16	12	14)
Jim	12	18	11	12 <i>J</i>

• The stocks have some prices today, yesterday, the day before

	Today	Yesterday	Daybefore	
IBM	(3	3.01	2.99	\
Google	4	3.99	3.99	
Toyota	5	5.01	5.01	
Texaco	$\setminus 1$	1.02	1.03	/

• How much is each client's portfolio worth today?

							7	Today	Yesterday	Daybefore	
	IBM	Google	Toyota	Texaco		IBM	1	3	3.01	2.99	\
Bill	(18	16	12	14)		Google		4	3.99	3.99	
Jim	12	18	11	12)	•	Toyota	l	5	5.01	5.01	
	-			-		Texaco		1	1.02	1.03	···)
=	Bill Jim	(18)(3 (12)(3	(5) + (16) (5) + (18)	<i>Today</i> (4) + (12)((4) + (11)(5) + 5) +	- (14)(1) - (12)(1)	Y	′esterd 	lay Daybe 	efore)	

		Today	Yesterday	Daybefore	
	Bill	(192	192.42	192.20)
_	Jim	175	175.29	175.17)

• There is a matrix that doesn't change things when it multiplies against them:

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 11 & 12 & 13 & \dots \\ 21 & 22 & 23 & \dots \\ 31 & 32 & 33 & \dots \\ 41 & 42 & 43 & \dots \end{bmatrix}$$
$$= \begin{bmatrix} 1 \cdot 11 + 0 \cdot 21 + 0 \cdot 31 + 0 \cdot 41 & 12 & 13 & \dots \\ 0 \cdot 11 + 1 \cdot 21 + 0 \cdot 31 + 0 \cdot 41 & 22 & 23 & \dots \\ 0 \cdot 11 + 0 \cdot 21 + 1 \cdot 31 + 0 \cdot 41 & 32 & 33 & \dots \\ 0 \cdot 11 + 0 \cdot 21 + 0 \cdot 31 + 1 \cdot 41 & 42 & 43 & \dots \end{bmatrix}$$

• There is a matrix that doesn't change things when it multiplies against them:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 11 & 12 & 13 & \dots \\ 21 & 22 & 23 & \dots \\ 31 & 32 & 33 & \dots \\ 41 & 42 & 43 & \dots \end{bmatrix}$$
$$= \begin{bmatrix} 1 \cdot 11 + 0 \cdot 21 + 0 \cdot 31 + 0 \cdot 41 & 12 & 13 & \dots \\ 0 \cdot 11 + 1 \cdot 21 + 0 \cdot 31 + 0 \cdot 41 & 22 & 23 & \dots \\ 0 \cdot 11 + 0 \cdot 21 + 1 \cdot 31 + 0 \cdot 41 & 32 & 33 & \dots \\ 0 \cdot 11 + 0 \cdot 21 + 0 \cdot 31 + 1 \cdot 41 & 42 & 43 & \dots \end{bmatrix}$$

• There is a matrix that doesn't change things when it multiplies against them:

	[1	0	0	0]		[11	12	1	3]		
	0	1	0	0		21	22	2	3				
	0	0	1	0	•	31	32	3	3				
	0	0	0	1		41	42	4	3]		
_ [11		21						1 2	2 2	13 23]	
_						31			3	2	33		
								41	4	2	43]	

• There is a matrix that doesn't change things when it multiplies against them:

Γ1	0	0	0]	Γ	11	12	2	13]
0	1	0	0		21	22	2	23	
0	0	1	0		31	32	2	33	
0	0	0	1	Ŀ	41	42	2	43]
	:	_	11 21 31	12 22 32	1 2 3	3	 		
			41	42	4	.3	•••		

2.5: Multiplication to solve one equation

•
$$\frac{2}{3} \cdot \frac{3}{2} = 1$$

• To solve
$$\frac{3}{2}x = 9$$
 we just multiply by $\frac{2}{3}$

• $x = \frac{2}{3}9 = 6$

- We are multiplying both sides by $\frac{2}{3}$
- Left side turns out nice and boring:

$$\frac{2}{3} \cdot \left(\frac{3}{2}x\right) = \left(\frac{2}{3} \cdot \frac{3}{2}\right)x = (1)x = x$$

2.5: Multiplication to solve a system

• Matrix version:

$$\left(\begin{array}{rrr}1&2\\1&3\end{array}\right)\cdot\left(\begin{array}{rrr}3&-2\\-1&1\end{array}\right)=\left(\begin{array}{rrr}1&0\\0&1\end{array}\right)$$

To solve:

$$\left(\begin{array}{cc} 3 & -2 \\ -1 & 1 \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 5 \\ 7 \end{array}\right)$$

• Just multiply:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 7 \end{pmatrix} = \begin{pmatrix} (1)(5) + (2)(7) \\ (1)(5) + (3)(7) \end{pmatrix} = \begin{pmatrix} 19 \\ 26 \end{pmatrix}$$

2.6: Matrix division

- There are several ways to do matrix division, see book for tricks
- We'll cover one systematic, basically easy way
- And we already know it, we just use RREF:
- If you know A and B, then to solve AX = B put the augmented matrix (A|B) into RREF as (I|X)
- In other words, RREF(A|B) = (I|X)
- **inverses** are solving AX = I, $X = A^{-1}$, so we use RREF there too

2.6: Using RREF to solve the system

$$\left(\begin{array}{cc} 3 & -2 \\ -1 & 1 \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 5 \\ 7 \end{array}\right)$$

Make augmented matrix and RREF

$$\begin{pmatrix} 3 & -2 & | & 5 \\ -1 & 1 & | & 7 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} -1 & 1 & | & 7 \\ 3 & -2 & | & 5 \end{pmatrix} \xrightarrow{R_2 + 3R_1}$$
$$\begin{pmatrix} -1 & 1 & | & 7 \\ 0 & 1 & | & 26 \end{pmatrix} \xrightarrow{R_1 - R_2} \begin{pmatrix} -1 & 0 & | & -19 \\ 0 & 1 & | & 26 \end{pmatrix} \xrightarrow{-R_1} \begin{pmatrix} 1 & 0 & | & 19 \\ 0 & 1 & | & 26 \end{pmatrix}$$

• Find inverse is almost exactly the same

$$\begin{pmatrix} 3 & -2 & | & 1 & 0 \\ -1 & 1 & | & 0 & 1 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} -1 & 1 & | & 0 & 1 \\ 3 & -2 & | & 1 & 0 \end{pmatrix} \xrightarrow{R_2 + 3R_1}$$
$$\begin{pmatrix} -1 & 1 & | & 0 & 1 \\ 0 & 1 & | & 1 & 3 \end{pmatrix} \xrightarrow{R_1 - R_2} \begin{pmatrix} -1 & 0 & | & -1 & -2 \\ 0 & 1 & | & 1 & 3 \end{pmatrix} \xrightarrow{-R_1} \begin{pmatrix} 1 & 0 & | & 1 & 2 \\ 0 & 1 & | & 1 & 3 \end{pmatrix}$$

2.6: Why is the inverse useful?

- The inverse allows you to solve AX = B using matrix multiplication instead of RREF
- $A^{-1}A = I$
- $A^{-1}AX = IX = X$
- If AX = B, then multiply both sides on the left by A⁻¹ then A⁻¹AX = A⁻¹B so X = A⁻¹B
- Multiply by the inverse does the same thing as the long RREF
- Of course to find the inverse, we use RREF