MA162: Finite mathematics

Jack Schmidt

University of Kentucky

October 26, 2011

Schedule:

- HW 5.1-5.3 is due Friday, Oct 28th, 2011.
- HW 6A is due Friday, Nov 4th, 2011.
- HW 6B is due Wednesday, Nov 9th, 2011.
- HW 6C is due Friday, Nov 11th, 2011. (Ch 6 is half easy and half crazy; start now)
- Exam 3 is Monday, Nov 14th, 5:00pm-7:00pm in CB106.

Today we will cover 5.3: amortized loans. We will be using calculators today.

Exam 3 breakdown

- Chapter 5, Interest and the Time Value of Money
 - Simple interest short term, interest not reinvested
 - Compound interest one payment, interest reinvested
 - Sinking funds recurring payments, big money in the future
 - Amortized loans recurring payments, big money in the present
- Chapter 6, Counting
 - Inclusion exclusion
 - Inclusion exclusion
 - Multiplication principle
 - Permutations and combinations

5.2: Time value of money and total payout

- How much would you pay me for (the promise of) \$100 in a year?
- Future money is not worth as much as money right now "A bird in the hand, is worth two in the bush" posits an interest rate of 100%
- Present value of future money depreciates the value of future money by comparing it to present money invested in the bank now
- **Total payout** is a popular measure of a financial instrument, but it mixes present money, with in-a-little-while money, with future money
- Total payout of an annuity is just the total amount you put in the savings account (or the total amount you borrowed each month)

5.2: Summary

- Monday we learned about annuities, present value, future value, and total payout
 - Future value of annuity, paying out *n* times at per-period interest rate *i*

$$A = R \frac{(1+i)^n - 1}{i}$$

- Present value of annuity is just future value divided by $(1+i)^n$
- Total payout is just nR, n payments of R each
- You are now ready to complete 5.1 and 5.2 (and should have probably done all of them anyways).
- Now we handle 5.3.

5.3: Buying annuities

- How much would you pay today for an annuity paying you back \$100 per month for 12 months?
- No more than \$1200 for sure, if you had \$1200 you could just pay yourself
- Let's try to find the right price for such a cash flow
- What if you didn't need the money? You could deposit it each month into your savings account.
- We already calculated that you end up with \$1205.52 if you do that
- How much would you pay today for \$1205.52 in the bank a year from now?

5.3: Pricing annuities

- If you had \$1193.53 and just put it in the bank now, you'd end up with $1193.53(1 + 1\%/12)^{12} = 1205.52$ anyways
- If you were just concerned with how much you had in the bank at the end, then you would have no preference between \$1193.53 up front and \$100 each month.
- In other words, the present value of the \$100 each month for a year is \$1193.53 because both of those have the same future value
- What if you do need the money each month? Is \$1193.53 still the right price?

5.3: Pricing annuities again

- What would happen if you put \$1193.53 in the bank, and withdrew \$100 each month?
- At the end of the year, you'd have \$0.00 in the bank, but you would not be overdrawn.
- Why is that? Imagine borrowing money from your friend, \$100 every month and not paying them back
- $\bullet\,$ They know you pretty well, so they insisted on 1% interest, compounded monthly
- How much do you owe them at the end?
- Well from their point of view, they gave their money to you, just like putting it in a savings account
- The bank would have owed them \$1205.52, so you owe them \$1205.52. Now imagine your savings account is your friend.

5.3: Buying annuities

- How much would you pay today for an annuity paying you back \$100 per month for 12 months?
- No more than \$1200 for sure, if you had \$1200 you could just pay yourself
- Let's try to find the right price for such a cash flow
- What if you didn't need the money? You could deposit it each month into your savings account.
 Earning 1% interest per year, compounded monthly

5.2: Annuity reminder

• Remember how to calculate the future value of annuity:

$$A = R((1+i)^n - 1)/(i)$$

$$R = $100$$

$$i = 0.01/12$$

 $\mathsf{n}~=12$

• How much would we need to put in the bank to have \$1205.52 at the end of the year?

5.1: Compound interest reminder

• Remember how to find the present value of future money in a savings account:

$$\mathsf{A} = P(1+i)^n$$

$$P = ?$$

i = 0.01/12

$$A = $1205.52$$

- \$1193.53 in the bank now, gives \$1205.52 in the bank in a year

5.3: Pricing annuities using present value

- If you had \$1193.53 and just put it in the bank now, you'd end up with $1193.53(1 + 1\%/12)^{12} = 1205.52$ anyways
- If you were just concerned with how much you had in the bank at the end, then you would have no preference between \$1193.53 up front and \$100 each month.
- In other words, the present value of the \$100 each month for a year is \$1193.53 because both of those have the same future value
- What if you do need the money each month? Is \$1193.53 still the right price?

5.3: Making your own annuity (endowment)

• What would happen if you put \$1193.53 in the bank, and withdrew \$100 each month?

Month	Bank	Month	Bank
1	1094.52	7	498.76
2	995.44	8	399.17
3	896.27	9	299.51
4	797.01	10	199.76
5	697.68	11	99.92
6	598.26	12	0.00

- At the end of the year, you'd have \$0.00 in the bank, but you would not be overdrawn.
- \$1193.53 **now** gets you \$100 per month for a year

5.3: Pricing an annuity

- To price an annuity using our old formulas:
- Find the future value $A = R((1+i)^n 1)/(i)$
- Find the present value by solving $A = P(1+i)^n$

$$P = A/((1+i)^n)$$

• If you like new formulas, the book divides the $(1 + i)^n$ using algebra:

$$P = R\left(1 - (1 + i)^{(-n)}\right)/(i)$$

5.3: Perspective

- Bobby Jo borrows \$100 per month from Hank at 1% interest, compounded monthly
- Hank thinks of Bobby Jo as a savings account
- Hank expects \$1205.52 in his account at the end of the year
- Bobby Jo owes Hank \$1205.52 at the end of the year
- What if the bank called you up and wanted to buy an annuity?
- What if Hank wants Bobby Jo to pay in advance? How much does Bobby Jo owe him up front?

5.3: Amortized loan

- Most people don't say "the bank purchased an annuity from me"
- "I owe the bank money every month, because they gave me a loan"
- So the bank gives you \$1193.53 and expects 1% interest
- You give the bank \$100 back at the end of the month

• You owe:	Month	Debt	Month	Debt
(1102 - 2) + (10/(10 - 0)) + (100)	1	1094.52	7	498.76
1193.53 + (1%/12 of it) - 100	2	995.44	8	399.17
	3	896.27	9	299.51
= \$1193.55 + \$0.99 - \$100	4	797.01	10	199.76
¢1004 E0	5	697.68	11	99.92
= \$1094.52	6	598.26	12	0.00

Amortized loans are just present values of annuities

• If you owe \$1000 at 12% interest compounded monthly and pay back \$20 per month, how long does it take to pay it off?

- If you owe \$1000 at 12% interest compounded monthly and pay back \$20 per month, how long does it take to pay it off?
- After one month, you owe \$1000 + \$10 interest \$20 payment, a total of \$990

- If you owe \$1000 at 12% interest compounded monthly and pay back \$20 per month, how long does it take to pay it off?
- After one month, you owe \$1000 + \$10 interest \$20 payment, a total of \$990
- So each month the debt goes down by a net \$10?
 Should take 99 more months, or a little more than 8 years.

- If you owe \$1000 at 12% interest compounded monthly and pay back \$20 per month, how long does it take to pay it off?
- After one month, you owe \$1000 + \$10 interest \$20 payment, a total of \$990
- So each month the debt goes down by a net \$10?
 Should take 99 more months, or a little more than 8 years.
- After two months, you owe \$990 + \$9.90 interest \$20 payment, a total of \$979.90

- If you owe \$1000 at 12% interest compounded monthly and pay back \$20 per month, how long does it take to pay it off?
- After one month, you owe \$1000 + \$10 interest \$20 payment, a total of \$990
- So each month the debt goes down by a net \$10?
 Should take 99 more months, or a little more than 8 years.
- After two months, you owe \$990 + \$9.90 interest \$20 payment, a total of \$979.90
- Now it went down by \$10.10! Should take \$979.90/\$10.10 \approx 97 months After one month of paying, we estimate two months fewer

- If you owe \$1000 at 12% interest compounded monthly and pay back \$20 per month, how long does it take to pay it off?
- After one month, you owe \$1000 + \$10 interest \$20 payment, a total of \$990
- So each month the debt goes down by a net \$10?
 Should take 99 more months, or a little more than 8 years.
- After two months, you owe \$990 + \$9.90 interest \$20 payment, a total of \$979.90
- Now it went down by \$10.10! Should take 979.90/\$10.10 \approx 97 months After one month of paying, we estimate two months fewer **How many is it really?**

• The debt is paid once the future value of the annuity is equal to the future value of the debt

• Annuity:

$$A = R((1+i)^{n} - 1)/(i)$$

$$R = \$20$$

$$i = 0.12/12 = 0.01$$

$$n = ?$$

$$A = \dots$$

$$Debt:$$

$$A = P(1+i)^{n}$$

$$P = \$1000$$

$$i = 0.01$$

$$n = ?$$

$$A = \$1000(1.01)^{n}$$

So solve:

$$20(1.01^n - 1)/0.01 = 1000(1.01)^n$$

Need to solve:

 $20(1.01^{n} - 1)/0.01 = 1000(1.01)^{n}$ divide both sides by 1000 and notice 20/0.01/1000 = 2:

 $2(1.01^n - 1) = 1.01^n$

distribute:

 $2(1.01^n) - 2 = 1.01^n$

subtract 1.01^n from both sides, add 2 to both sides:

 $1.01^{n} = 2$

Now what?

5.3: Logarithms

• To solve:

$$1.01^{n} = 2$$

• Take logarithms of both sides:

 $(n)(\log(1.01)) = \log(2)$

- log(1.01) is just a number (some might say 0.004321373783)
- Divide both sides by log(1.01) to get:

$$n = \log(2)/\log(1.01) \approx 69.66 \approx 70$$

• n = 70 months

Monthly payments are worth the same as the debt after 70 months