MA162: Finite mathematics

Jack Schmidt

University of Kentucky

November 7, 2011

Schedule:

- HW 6B is due Wednesday, Nov 9th, 2011.
- HW 6C is due Friday, Nov 11th, 2011.
- Exam 3 is Monday, Nov 14th, 5:00pm-7:00pm in CB106.

Today we will cover 6.3: Multiplication principle

Exam 3 breakdown

- Chapter 5, Interest and the Time Value of Money
 - Simple interest
 - Compound interest
 - Sinking funds
 - Amortized loans
- Chapter 6, Counting
 - Inclusion exclusion
 - Inclusion exclusion
 - Multiplication principle
 - Permutations and combinations

6.3: What is multiplication?

• How many squares in this figure?

6.3: What is multiplication?

• How many squares in this figure?

 $\bullet\,$ Each column has 3 squares, there are 7 columns, so $3\cdot 7=21$

6.3: What is multiplication?

• How many squares in this figure?

- Each column has 3 squares, there are 7 columns, so $3 \cdot 7 = 21$
- Counting each square is slower and error-prone.

6.3: Three square meals a day

• You decide to brush your teeth after every meal, but are worried about the toothpaste consumption. You use about 1% of the tube every time you brush. How many weeks will it last?

6.3: Three square meals a day

- You decide to brush your teeth after every meal, but are worried about the toothpaste consumption. You use about 1% of the tube every time you brush. How many weeks will it last?
- How many brushes per week?

6.3: Three square meals a day

- You decide to brush your teeth after every meal, but are worried about the toothpaste consumption. You use about 1% of the tube every time you brush. How many weeks will it last?
- How many brushes per week?

• So 21 brushes per week; takes less than 5 weeks to use up a tube.

6.3: A rainbow of possibilities

 You are working on a dazzling fashion project and have seven dyes: Red, Orange, Yellow, Green, Blue, Indigo, and Violet. You've got three types of fabric: Burlap, Cotton, and Denim.

How many different color/texture combinations do you have?

6.3: A rainbow of possibilities

 You are working on a dazzling fashion project and have seven dyes: Red, Orange, Yellow, Green, Blue, Indigo, and Violet. You've got three types of fabric: Burlap, Cotton, and Denim.

How many different color/texture combinations do you have?

• Again (3)(7) = 21

• Suppose you want to go watch a movie; you could go see one of the 12 movies at the huge theater or one of the 2 movies at the Kentucky. How many possibilities are there?

• Suppose you want to go watch a movie; you could go see one of the 12 movies at the huge theater or one of the 2 movies at the Kentucky. How many possibilities are there?

12+2=14

• Suppose you want to do a critical comparison of hollywood fluff with low budget art film, so you plan on going to one movie at each theater. How many possibilities are there?

• Suppose you want to go watch a movie; you could go see one of the 12 movies at the huge theater or one of the 2 movies at the Kentucky. How many possibilities are there?

12+2=14

• Suppose you want to do a critical comparison of hollywood fluff with low budget art film, so you plan on going to one movie at each theater. How many possibilities are there?

(12)(2)=24

• Suppose you are doing a study on primacy and its effect on critical comparisons, so you need to convince a bunch of your film critic friends to go see a movie at each theater, but you care which theater they go to first. How many possibilities are there?

• Suppose you want to go watch a movie; you could go see one of the 12 movies at the huge theater or one of the 2 movies at the Kentucky. How many possibilities are there?

12+2=14

• Suppose you want to do a critical comparison of hollywood fluff with low budget art film, so you plan on going to one movie at each theater. How many possibilities are there?

(12)(2)=24

• Suppose you are doing a study on primacy and its effect on critical comparisons, so you need to convince a bunch of your film critic friends to go see a movie at each theater, but you care which theater they go to first. How many possibilities are there?

(12)(2)(2)=48

• If you roll a **red die** and a **blue die**, how many possible outcomes are there?

• If you roll a **red die** and a **blue die**, how many possible outcomes are there?

		1	2	3	4	5	6	
	1	11	12	13	14	15	16	-
	2	2 <mark>1</mark>	<mark>22</mark>	2 <mark>3</mark>	2 4	2 <mark>5</mark>	2 <mark>6</mark>	
• A picture is easier:	3	31	32	33	34	3 <mark>5</mark>	3 <mark>6</mark>	36 ways
	4	41	42	43	44	4 <mark>5</mark>	4 6	
	5	51	52	53	54	5 <mark>5</mark>	5 <mark>6</mark>	
	6	61	<mark>62</mark>	<mark>63</mark>	64	6 <mark>5</mark>	6 <mark>6</mark>	

ī.

• If you roll a **red die** and a **blue die**, how many possible outcomes are there?

		1	2	3	4	5	6	
	1	11	12	13	14	15	16	-
	2	21	2 <mark>2</mark>	2 <mark>3</mark>	24	2 <mark>5</mark>	2 <mark>6</mark>	
• A picture is easier:	3	31	32	33	34	3 <mark>5</mark>	3 <mark>6</mark>	36 ways
	4	41	42	43	44	45	4 6	
	5	51	52	53	54	5 <mark>5</mark>	5 <mark>6</mark>	
	6	61	62	63	64	6 <mark>5</mark>	6 <mark>6</mark>	

• Get a penny, a nickel, and a dime. Flip all three.

How many possibilities?

• If you roll a **red die** and a **blue die**, how many possible outcomes are there?

	1	2	3	4	5	6	
1	11	12	13	14	15	16	-
2	21	2 <mark>2</mark>	2 <mark>3</mark>	24	2 <mark>5</mark>	2 <mark>6</mark>	
3	31	32	33	34	3 <mark>5</mark>	3 <mark>6</mark>	36 ways
4	41	42	43	44	45	46	
5	51	52	53	54	5 <mark>5</mark>	5 <mark>6</mark>	
6	61	<mark>62</mark>	<mark>63</mark>	64	6 <mark>5</mark>	6 <mark>6</mark>	
	1 2 3 4 5 6	1 11 2 21 3 31 4 41 5 51 6 61	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

- Get a penny, a nickel, and a dime. Flip all three.
 How many possibilities?
- HHH, HHT, HTH, HTT, THH, THT, TTH, TTT (2)(2)(2)=8

6.3: Drawing the possibilities

 There are two main ways to get to Winchester from Lexington: Winchester Rd (US-60) and I-64.
 From Winchester, there are three main ways to Clay City: KY-89, KY-15, and the Mountain Parkway (KY-402).
 How many different ways are there from Lexington to Clay City using these routes?

6.3: Trees for counting

• We can unfold the map to make the possibilities clearer:

6.3: Trees for counting

• We can unfold the map to make the possibilities clearer:

• This is a decision tree. Note how the decision to be made after I-64 is the same as the decision to be made after US-60. The first choice does not affect the second choice. The choices are **independent**. • A standard Kentucky license plate has three digits followed by three letters. Assuming all choices of digits and letters were allowed, how many license plates are possible?

- A standard Kentucky license plate has three digits followed by three letters. Assuming all choices of digits and letters were allowed, how many license plates are possible?
- $(10) \cdot (10) \cdot (10) \cdot (26) \cdot (26) \cdot (26) = 17,576,000$

- A standard Kentucky license plate has three digits followed by three letters. Assuming all choices of digits and letters were allowed, how many license plates are possible?
- $(10) \cdot (10) \cdot (10) \cdot (26) \cdot (26) \cdot (26) = 17,576,000$
- How many cars are in Kentucky?

• A standard Kentucky license plate has three digits followed by three letters. Assuming all choices of digits and letters were allowed, how many license plates are possible?

•
$$(10) \cdot (10) \cdot (10) \cdot (26) \cdot (26) \cdot (26) = 17,576,000$$

- How many cars are in Kentucky?
- 4 million people, about 4 million vehicles, 2 million of which probably have standard plates

• If a restaurant offers 5 appetizers, 10 entres, and 6 desserts, how many full course meals are possible?

- If a restaurant offers 5 appetizers, 10 entres, and 6 desserts, how many full course meals are possible?
- If that restaurant wanted the greatest increase in the number of possibilities, should it add 1 appetizer, 1 entre, or 1 dessert?

- If a restaurant offers 5 appetizers, 10 entres, and 6 desserts, how many full course meals are possible?
- If that restaurant wanted the greatest increase in the number of possibilities, should it add 1 appetizer, 1 entre, or 1 dessert?

• (6)(10)(6) = 360 vs. (5)(11)(6) = 330 vs. (5)(10)(7) = 350

- If a restaurant offers 5 appetizers, 10 entres, and 6 desserts, how many full course meals are possible?
- If that restaurant wanted the greatest increase in the number of possibilities, should it add 1 appetizer, 1 entre, or 1 dessert?

•
$$(6)(10)(6) = 360$$
 vs. $(5)(11)(6) = 330$ vs. $(5)(10)(7) = 350$

• If two people go to the restaurant and refuse to order the same appetizer, entre, or dessert, how many possible orders can the two people make?

- If a restaurant offers 5 appetizers, 10 entres, and 6 desserts, how many full course meals are possible?
- If that restaurant wanted the greatest increase in the number of possibilities, should it add 1 appetizer, 1 entre, or 1 dessert?

•
$$(6)(10)(6) = 360 \text{ vs.} (5)(11)(6) = 330 \text{ vs.} (5)(10)(7) = 350$$

- If two people go to the restaurant and refuse to order the same appetizer, entre, or dessert, how many possible orders can the two people make?
- (5)(10)(6) for the first, but one appetizer, one entre, and one dessert is now forbidden

- If a restaurant offers 5 appetizers, 10 entres, and 6 desserts, how many full course meals are possible?
- If that restaurant wanted the greatest increase in the number of possibilities, should it add 1 appetizer, 1 entre, or 1 dessert?

•
$$(6)(10)(6) = 360 \text{ vs.} (5)(11)(6) = 330 \text{ vs.} (5)(10)(7) = 350$$

- If two people go to the restaurant and refuse to order the same appetizer, entre, or dessert, how many possible orders can the two people make?
- (5)(10)(6) for the first, but one appetizer, one entre, and one dessert is now forbidden
- $(5)(10)(6) \cdot (4)(9)(5) = 54000.$

• How many ways to arrange the letters **RGB** using three at a time?

- How many ways to arrange the letters **RGB** using three at a time?
- RGB, RBG, GRB, GBR, BRG, BGR

- How many ways to arrange the letters **RGB** using three at a time?
- RGB, RBG, GRB, GBR, BRG, BGR
- Three possibilities for first (**R**, **G**, or **B**), and for each first letter, two choices for second (the other two), and only one choice for third letter (the only remaining one)

- How many ways to arrange the letters RGB using three at a time?
- RGB, RBG, GRB, GBR, BRG, BGR
- Three possibilities for first (**R**, **G**, or **B**), and for each first letter, two choices for second (the other two), and only one choice for third letter (the only remaining one)
- How many ways to arrange HORSEY using two at a time?

- How many ways to arrange the letters **RGB** using three at a time?
- RGB, RBG, GRB, GBR, BRG, BGR
- Three possibilities for first (**R**, **G**, or **B**), and for each first letter, two choices for second (the other two), and only one choice for third letter (the only remaining one)
- How many ways to arrange HORSEY using two at a time?
- HO, HR, HS, HE, HY, OH, OR, OS, OE, OY, RH, RO, RS, RE, RY, SH, SO, SR, SE, SY, EH, EO, ER, ES, EY, YH, YO, YR, YS, YE

- How many ways to arrange the letters **RGB** using three at a time?
- RGB, RBG, GRB, GBR, BRG, BGR
- Three possibilities for first (**R**, **G**, or **B**), and for each first letter, two choices for second (the other two), and only one choice for third letter (the only remaining one)
- How many ways to arrange HORSEY using two at a time?

•	HO,	HR,	HS,	HE,	ΗY,
	OH,	OR,	OS,	OE,	OY,
	RH,	RO,	RS,	RE,	RY,
	SH,	SO,	SR,	SE,	SY,
	EH,	EO,	ER,	ES,	EY,
	YH,	YO,	YR,	YS,	ΥE

• Six possibilities for first (H,O,R,S,E,Y) and five for second (the remaining five)