MA162: Finite mathematics

Jack Schmidt

University of Kentucky

March 21, 2012

SCHEDULE:

- Exam 2 returned during recitation
- HW 5.1,5.2 are due Fri, March 23rd, 2012
- HW 5.3.6.1 are due Fri. March 30th. 2012
- HW 6.2,6.3 are due Fri, April 6th, 2012
- Exam 3 is Monday, Apr 9th, 5:00pm-7:00pm in CB106 and CB118.

Today we will cover 5.3: amortized loans. We will be using calculators today.

Exam 3 breakdown

- Chapter 5, Interest and the Time Value of Money
 - Simple interest short term, interest not reinvested
 - Compound interest one payment, interest reinvested
 - Sinking funds recurring payments, big money in the future
 - Amortized loans recurring payments, big money in the present
- Chapter 6, Counting
 - Inclusion exclusion
 - Inclusion exclusion
 - Multiplication principle
 - Permutations and combinations

5.2: Summary

- Monday we learned about annuities, present value, future value, and total payout
 - ullet Future value of annuity, paying out n times at per-period interest rate i

$$A = R \frac{(1+i)^n - 1}{i}$$

- Present value of annuity is just future value divided by $(1+i)^n$
- Total payout is just nR, n payments of R each
- You should be done with homework for 5.1 and 5.2.
- Today we handle 5.3.

5.3: Buying annuities

- How much would you pay today for an annuity paying you back \$100 per month for 12 months?
- No more than \$1200 for sure, if you had \$1200 you could just pay yourself
- If you have a 12% APR (1% per month) account, then you could invest the money each month, In one year you have \$1268.25.
- How much would you need right now (one payment)
 in order to have \$1268.25 in the account after one year?

5.3: Buying annuities

• We solve a 5.1 problem:

```
P = ?
i = 0.12/12 = 0.01 per month
n = 12 months
A = $1268.25
A = P(1+i)^n
$1268.25 = P(1.01)^{12}
P = $1268.25/(1.01)^{12} = $1125.50
```

- If we had \$1125.50 right now, we could invest it to end up with \$1268.25
- If we got \$100 every month, we could invest it to end up with \$1268.25
- So the cash flow is worth \$1125.50 now

5.3: Pricing annuities again

- What if we don't want to invest it? What if we want to spend \$100 every month?
- Well, put \$1125.50 in the bank and remove \$100 every month
- How much is left at the end of the year?

Date	Old Balance	Interest on Old	With draw al	New Balance
Jan	\$1125.50	\$11.26	\$100.00	\$1036.76
Feb	\$1036.76	\$10.37	\$100.00	\$ 947.12
Mar	\$ 947.12	\$ 9.47	\$100.00	\$ 856.59
Apr	\$ 856.59	\$ 8.57	\$100.00	\$ 765.16
May	\$ 765.16	\$ 7.65	\$100.00	\$ 672.81
Jun	\$ 672.81	\$ 6.73	\$100.00	\$ 579.54
Jul	\$ 579.54	\$ 5.80	\$100.00	\$ 485.33
Aug	\$ 485.33	\$ 4.85	\$100.00	\$ 390.19
Sep	\$ 390.19	\$ 3.90	\$100.00	\$ 294.09
Oct	\$ 294.09	\$ 2.94	\$100.00	\$ 197.03
Nov	\$ 197.03	\$ 1.97	\$100.00	\$ 99.00
Dec	\$ 99.00	\$ 0.99	\$100.00	\$ -0.01

5.3: Pricing an annuity

- To price an annuity using our old formulas:
- Find the future value $A = R((1+i)^n 1)/(i)$
- Find the present value by solving $A = P(1+i)^n$

$$P = A/((1+i)^n)$$

• If you like new formulas, the book divides the $(1+i)^n$ using algebra:

$$P = R \left(1 - (1+i)^{(-n)} \right) / (i)$$

5.3: Perspective

- Alex borrows \$100 per month from Bart at 1% per month interest, compounded monthly
- Bart thinks of Alex as a savings account
- Bart expects \$1268.25 in his account at the end of the year
- Alex owes Bart \$1268.25 at the end of the year

- What if the bank called you up and wanted to buy an annuity?
- What if Bart wants Alex to pay in advance? How much does Alex owe Bart up front?

5.3: Amortized loan

- Most people don't say "the bank purchased an annuity from me"
- "I owe the bank money every month, because they gave me a loan"
- So the bank gives you \$1125.50 and expects 1% interest per month
- You give the bank \$100 back at the end of the month

	Date	Old	Int	Pay	Balance
	Jan	\$1125.50	\$11.26	\$100	\$1036.76
	Feb	\$1036.76	\$10.37	\$100	\$ 947.12
	Mar	\$ 947.12	\$ 9.47	\$100	\$ 856.59
	Apr	\$ 856.59	\$ 8.57	\$100	\$ 765.16
V	May	\$ 765.16	\$ 7.65	\$100	\$ 672.81
You owe:	Jun	\$ 672.81	\$ 6.73	\$100	\$ 579.54
#110F FO + (10/ C'+) #100	Jul	\$ 579.54	\$ 5.80	\$100	\$ 485.33
\$1125.50 + (1% of it) - \$100	Aug	\$ 485.33	\$ 4.85	\$100	\$ 390.19
¢110F F0 ↓ ¢11 0€ ¢100	Sep	\$ 390.19	\$ 3.90	\$100	\$ 294.09
= \$1125.50 + \$11.26 - \$100	Oct	\$ 294.09	\$ 2.94	\$100	\$ 197.03
¢1026.76	Nov	\$ 197.03	\$ 1.97	\$100	\$ 99.00
= \$1036.76	Dec	\$ 99.00	\$ 0.99	\$100	\$ -0.01

Amortized loans are just present values of annuities

• If you owe \$1000 at 12% interest compounded monthly and pay back \$20 per month, how long does it take to pay it off?

- If you owe \$1000 at 12% interest compounded monthly and pay back \$20 per month, how long does it take to pay it off?
- \bullet After one month, you owe \$1000 + \$10 interest \$20 payment, a total of \$990

- If you owe \$1000 at 12% interest compounded monthly and pay back \$20 per month, how long does it take to pay it off?
- \bullet After one month, you owe \$1000 + \$10 interest \$20 payment, a total of \$990
- So each month the debt goes down by a net \$10?
 Should take 99 more months, or a little more than 8 years.

- If you owe \$1000 at 12% interest compounded monthly and pay back \$20 per month, how long does it take to pay it off?
- \bullet After one month, you owe \$1000 + \$10 interest \$20 payment, a total of \$990
- So each month the debt goes down by a net \$10?
 Should take 99 more months, or a little more than 8 years.
- \bullet After two months, you owe \$990 + \$9.90 interest \$20 payment, a total of \$979.90

- If you owe \$1000 at 12% interest compounded monthly and pay back \$20 per month, how long does it take to pay it off?
- \bullet After one month, you owe \$1000 + \$10 interest \$20 payment, a total of \$990
- So each month the debt goes down by a net \$10?
 Should take 99 more months, or a little more than 8 years.
- \bullet After two months, you owe \$990 + \$9.90 interest \$20 payment, a total of \$979.90
- Now it went down by \$10.10! Should take \$979.90/\$10.10 \approx 97 months After one month of paying, we estimate two months fewer

- If you owe \$1000 at 12% interest compounded monthly and pay back \$20 per month, how long does it take to pay it off?
- \bullet After one month, you owe \$1000 + \$10 interest \$20 payment, a total of \$990
- So each month the debt goes down by a net \$10?
 Should take 99 more months, or a little more than 8 years.
- \bullet After two months, you owe \$990 + \$9.90 interest \$20 payment, a total of \$979.90
- Now it went down by \$10.10! Should take \$979.90/\$10.10 \approx 97 months After one month of paying, we estimate two months fewer **How many is it really?**

 The debt is paid once the future value of the annuity is equal to the future value of the debt

Annuity: Debt:
$$A = R((1+i)^n - 1)/(i)$$
 $A = P(1+i)^n$

R = \$20
 i = 0.12/12 = 0.01
 n = ?
 A = ...

Debt: $A = P(1+i)^n$

P = \$1000
 i = 0.01
 n = ?
 A = \$1000(1.01)^n

So solve:

$$20(1.01^n - 1)/0.01 = 1000(1.01)^n$$

5.3: Algebra

Need to solve:

$$20(1.01^n - 1)/0.01 = 1000(1.01)^n$$

divide both sides by \$1000 and notice 20/0.01/1000 = 2:

$$2(1.01^n - 1) = 1.01^n$$

distribute:

$$2(1.01^n) - 2 = 1.01^n$$

subtract 1.01^n from both sides, add 2 to both sides:

$$1.01^n = 2$$

Now what?

5.3: Logarithms

To solve:

$$1.01^n = 2$$

• Take logarithms of both sides:

$$(n)(\log(1.01)) = \log(2)$$

- log(1.01) is just a number (some might say 0.004321373783)
- Divide both sides by log(1.01) to get:

$$n = \log(2)/\log(1.01) \approx 69.66 \approx 70$$

- n = 70 months
- Monthly payments are worth the same as the debt after 70 months