MA111: Contemporary mathematics

Jack Schmidt University of Kentucky

September 28, 2012

Entrance Slip (Show Your Work; due 5 min past the hour):

 Borrow \$100 at 10% per month interest, pay back at \$40 per month, how long does it take you to pay it all back?

• Borrow \$100 at 2% per month, pay \$2 per month, how long? Schedule:

- HW 10.2,10.3 is due Friday, Sep 28th, 2012.
- HW 10.6 is due Friday, Oct 5th, 2012.
- The second exam is Monday, Oct 8th, during class.

Today we will drill 10.3, compound interest (and sneakily start 10.6).

Context: Practice on some more exam like problems

- "Which is the better deal?" problems are better done with your pencil and paper than with your time and money
- "How long does it take to pay back?" is also important to know before you borrow, not three years into the loan.
- \$100 at 10% per month interest, pay back at \$40 per month
 End of first month, owe (\$100)(1.10) \$40 = \$110 \$40 = \$70
 End of second month, owe (\$70)(1.10) \$40 = \$77 \$40 = \$37
 End of third month, owe (\$37)(1.10) \$40 = \$40.70 \$40 = \$0.70
 Probably should just send the extra \$0.70 this month
- We'll start with a few review problems similar to the homework

• \$100 Savings Account earning 2.4% compound interest annually Value after 5 years?

• \$100 Savings Account earning 2.4% compound interest annually Value after 5 years? \$112.59, not \$112.00 as in simple

$$P = \$100$$

$$p = 0.024 \text{ per year}$$

$$T = 5 \text{ years}$$

$$F = P(1+p)^{T} = \$100(1+0.024)^{5} = \$112.5899907 = \$112.59$$

• \$100 Savings Account earning 2.4% compound interest annually Value after 5 years? \$112.59, not \$112.00 as in simple

$$P = \$100$$

$$p = 0.024 \text{ per year}$$

$$T = 5 \text{ years}$$

$$F = P(1+p)^{T} = \$100(1+0.024)^{5} = \$112.5899907 = \$112.59$$

• \$100 Savings Account earning 2.4% compound interest annually the first two years, then 2.1% compound interest annually the next three years, Value after 5 years?

• \$100 Savings Account earning 2.4% compound interest annually Value after 5 years? \$112.59, not \$112.00 as in simple

$$P = \$100$$

$$p = 0.024 \text{ per year}$$

$$T = 5 \text{ years}$$

$$F = P(1+p)^{T} = \$100(1+0.024)^{5} = \$112.5899907 = \$112.59$$

 \$100 Savings Account earning 2.4% compound interest annually the first two years, then 2.1% compound interest annually the next three years, Value after 5 years? \$111.60

F =\$100(1.024)(1.024)(1.021)(1.021)(1.021) = \$111.60

Activity: Moving money and compound interest

• \$100 Savings Account

earning 2.4% compound interest annually the first two years, then you deposit another \$100, then 2.4% compound interest annually the next three years,

Value after 5 years?

- Use simple interest month-by-month to find the total amount
- Can you use compound interest to solve it?

What if you had two banks,

one that you put in \$100 at the beginning

one that you put in \$100 after two years

How much do you have total from the two accounts?

 \$100 Savings Account earning 2.4% compound interest annually the first two years, then you deposit another \$100, then 2.4% compound interest annually the next three years, Value after 5 years?

\$100 Savings Account earning 2.4% compound interest annually the first two years, then you deposit another \$100, then 2.4% compound interest annually the next three years, Value after 5 years? \$219.97

Т	F formula = F	number
Now	\$100.00 =	\$100.00
1st year	(\$100.00)(1.024) =	\$102.40
2nd year	(\$102.40)(1.024) =	\$104.86
deposit	104.86 + 100 =	\$204.86
3rd year	(\$204.86)(1.024) =	\$209.78
4th year	(\$209.78)(1.024) =	\$214.81
5th year	(\$214.81)(1.024) =	\$219.97

 \$100 Savings Account earning 2.4% compound interest annually the first two years, then you deposit another \$100, then 2.4% compound interest annually the next three years, Value after 5 years? \$219.97 or \$219.96

• Faster is to think: \$100 was compounded 5 years, plus \$100 was compounded 3 years

F =\$100(1.024)⁵ + \$100(1.024)³ = \$219.9641731 = \$219.96

Activity 2: Short installment loans

- Similar to the entrance slip:
- Borrow \$100 at 10% per month, and pay back \$22.96 at the end of each month
- How much do you owe after each month?
- When are you done paying it off?
- How much total did you end up paying?
- Is it better to pay \$100 now or the \$137.76 over six months?

Fast: Applications of interest

- Simple interest is used over the course of a single period
- Compound interest is just repeated simple interest

For a changing interest rate, or just a few periods, use simple repeatedly

• Amortized loans, pay back a loan in equal payments

For just a few payments, just use compound repeatedly

• Monday we'll learn to use the fancy formulas for longer loans

Wednesday we'll go over consumer financial products

Friday we'll review for the exam

Assignment and exit slip

- Book problems are decent: #1-4, 5-8, 9-10, 11-12, 13-18, 21-22, 23-24, 31-32, 33-36, 37-40, 41-42, 43-44, 45-46, 47-48, 49-50
- Ok, so #1-4, #21, #37, #41, #43, #45, #47, #49, #19 but use a current news article

(one of the presidential candidates released his taxes recently; do his figures add up?)

- Exit slip: Which is cheaper:
 - A loan at 2% per month, compounded monthly, 60 months
 - A loan at 25% per year, compounded yearly, 5 years
 - A loan at 0.4% per week, compounded weekly, 260 weeks
- Do you need to take them out to five years or is one year enough?