MA111 Ch. 10 Exam (practice) 2012-10-08

## Part I: Matching

- Percentage increase formula
  Compound interest formula
  Installment loan formula
  Present value of 20 years worth of monthly payments of \$100 at 5% monthly interest
  Future value of \$100 after one period of 5% and three periods of 20% interest
  Present value of three monthly payments of \$100 at 5% monthly interest

  Future value of three monthly payments of \$100 at 5% monthly interest
- (1) N = A(1+p), N is new value, A is the old value, p is percentage as a decimal
- (2)  $F = P(1+p)^T$ , F is future value, P is present value, p is periodic interest rate, T is number of periods
- (3)  $P = Mq \frac{1-q^T}{1-q}$ , P is present value, M is periodic payment, p is periodic interest rate, T is number of periods, q = 1/(1+p) helps discount future payments into the present
- $(4) \ \$100(1/1.05) \frac{1 (1/1.05)^{240}}{1 (1/1.05)}$
- (5) \$100 $(1.05)(1.2)^3$
- (6)  $100/(1.05) + 100/(1.05)^2 + 100/(1.05)^3$
- $(7) \ \$100(1.05)^2 + \$100(1.05) + \$100$

## Percentage Increase

1. If \$300 is increased by 25%, what is the result?

2. If \$300 is decreased by 12%, what is the result? 
$$$300 (1-0.12) = $300(0.88) = $4264$$

3. If \$300 is increased by 10%, and the result is increased by 10%, what is the final result?

\$360 (1.1) (1.1) = \$363  
\$300 
$$\frac{102}{830}$$
 \$330  $\frac{162}{833}$  \$363

4. If \$300 is increased by 2%, the result is decreased by 3%, and that result is increased by 4%, what is the final result?

$$$300(1+0.02)(1-0.03)(1+0.04)$$
  
=  $$300(1.02)(0.97)(1.04)$   
=  $$308.69$ 

5. Which is the smaller number: (a) \$300 or (b) the result of first increasing \$200 by 50%, and then decreasing the result by 50%?

## Compound interest

1. How much does one pay back a year later, if one borrows \$300 at 1.5% ver month interest? F = 300 (1.015) 12 \$\$358.69

$$P=300$$
 $F=?$ 
 $P=0.015$  per month
 $T=12$  months

2. How much can one borrow today at 1.5% per month interest, if one is willing to repay \$500 two years from now? P = 500/ (1.015) = \$349.77/

3. If one borrows at 19% per month interest (crazy), how many months until the debt has doubled?

| Months | Value             | 4 months/gires 200%,                                 |
|--------|-------------------|------------------------------------------------------|
| D      | 100% = 1          |                                                      |
| 1      | 119% = 1.19       | double.                                              |
| 2      | 141.61% = (1.19)2 | (1) Cocice very slightly                             |
| 3      | 168.516% = (1.19) | (to be precise, very slightly<br>less than 4 months) |
| 4      | 200.5342= (1.19)4 | less than 4 months)                                  |

4. If one borrows \$300 and repays \$336 a month later, what is the monthly interest rate?

$$P = 300$$
 $F = 336$ 
 $P = 336$ 
 $P = 1+P$ 
 $P = 12\%$  per month

 $P = 1$ 
 $1.12 = 1+P$ 
 $0.12 = P$ 

5. Which is the smaller number: (a) The amount to repay a \$300 debt a year later at 2% per month interest, (b) The amount to repay a \$300 debt a year later at 0.5\% per week interest (assuming 52 weeks in a year)?

(a) \$300  $(1.02)^{12} = $380.47$ (b) \$300  $(1.005)^{52} = $388.83$ (c) is smaller

## Amortized loans

1. How much do you owe after 6 months if you borrow \$300 at 1.3% per month interest and pay back \$50 at the end of every month (a total of \$300)?

| Each New month is          |
|----------------------------|
| (012).(1.013)-50           |
| Plus Interst Minus Payment |
| ,                          |

| # Months        | Debt                                                             |
|-----------------|------------------------------------------------------------------|
| 0-2396          | 300.00<br>253.90<br>207.20<br>159.89<br>111.97<br>63.43<br>14.25 |
| th if won and m | illing 40 mass                                                   |

|   | \$14.25 left     | 1 |
|---|------------------|---|
| _ | after six mounts | / |
|   |                  |   |

9 = 1/1.01

2. How much can you borrow now at 1% per month if you are willing to pay back \$50 every month for a year?

$$P = M_g (1 - g^T)/(1 - g) = 50 (1 - 1/1.01)/(1 - 1/1.01)/(1 - 1/1.01)$$

$$P = M_g (1 - g^T)/(1 - g) = 50 (1/1.01)/(1 - 1/1.01)/(1 - 1/1.01)$$

$$P = M_g (1 - g^T)/(1 - g) = 50 (1/1.01)/(1 - 1/1.01)/(1 - 1/1.01)$$

$$P = M_g (1 - g^T)/(1 - g) = 50 (1/1.01)/(1 - 1/1.01)/(1 - 1/1.01)$$

$$P = M_g (1 - g^T)/(1 - g) = 50 (1/1.01)/(1 - 1/1.01)/(1 - 1/1.01)$$

$$P = M_g (1 - g^T)/(1 - g) = 50 (1/1.01)/(1 - 1/1.01)/(1 - 1/1.01)$$

$$P = M_g (1 - g^T)/(1 - g) = 50 (1/1.01)/(1 - 1/1.01)/(1 - 1/1.01)$$

$$P = M_g (1 - g^T)/(1 - g) = 50 (1/1.01)/(1 - 1/1.01)/(1 - 1/1.01)$$

$$P = M_g (1 - g^T)/(1 - g) = 50 (1/1.01)/(1 - 1/1.01)/(1 - 1/1.01)$$

$$P = M_g (1 - g^T)/(1 - g) = 50 (1/1.01)/(1 - 1/1.01)/(1 - 1/1.01)$$

$$P = M_g (1 - g^T)/(1 - g) = 50 (1/1.01)/(1 - 1/1.01)/(1 - 1/1.01)$$

$$P = M_g (1 - g^T)/(1 - g) = 50 (1/1.01)/(1 - 1/1.01)/(1 - 1/1.01)$$

$$P = M_g (1 - g^T)/(1 - g) = 50 (1/1.01)/(1 - 1/1.01)/(1 - 1/1.01)$$

$$P = M_g (1 - g^T)/(1 - g) = 50 (1/1.01)/(1 - 1/1.01)/(1 - 1/1.01)$$

$$P = M_g (1 - g^T)/(1 - g) = 50 (1/1.01)/(1 - 1/1.01)/(1 - 1/1.01)$$

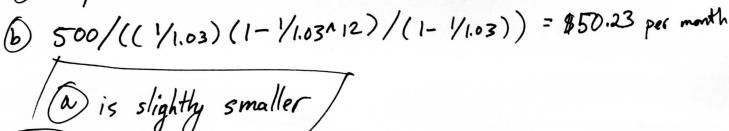
$$P = M_g (1 - g^T)/(1 - g) = 50 (1/1.01)/(1 - 1/1.01)/(1 - 1/1.01)$$

$$P = M_g (1 - g^T)/(1 - g) = 50 (1/1.01)/(1 - 1/1.01)/(1 - 1/1.01)$$

$$P = M_g (1 - g^T)/(1 - g) = 50 (1/1.01)/(1 - 1/1.01)/(1 - 1/1.01)$$

$$P = M_g (1 - g^T)/(1 - g) = 50 (1/1.01)/(1 - 1/1.01)/(1 - 1/1.01)$$

$$P = M_g (1 - g^T)/(1 - g) = 50 (1/1.01)/(1 - 1/1.01)/(1 - 1/1.01)$$


$$P = M_g (1 - g^T)/(1 - g) = 50 (1/1.01)/(1 - 1/1.01)/(1 - 1/1.01)$$

$$P = M_g (1 - g^T)/(1 - g) = 50 (1/1.01)/(1 - 1/1.01)/(1 - 1/1.01)$$

$$P = M_g (1 - g^T)/(1 - g) = 50 (1/1.01)/(1 - 1/1.01)/(1 - 1/1.01)$$

3. How much should you pay back every month if you want to borrow \$500 now at 1% per month and be done paying it back after 7 months?

- 4. Which is the smaller amount: (a) \$50 per month for a year, or (b) the monthly payment to repay a \$500 at 3% per month interest in a year.
  - a \$50 per month

