Name: Kathryn

MA111 Ch. 10 Exam (practice) 2012-10-08

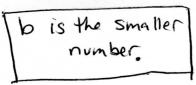
Part I: Matching

- _____ Percentage increase formula
 - 2 Compound interest formula
- ____3___ Installment loan formula
- Present value of 20 years worth of monthly payments of \$100 at 5% monthly interest
- ______5 ____ Future value of \$100 after one period of 5% and three periods of 20% interest
- Present value of three monthly payments of \$100 at 5% monthly interest
- Future value of three monthly payments of \$100 at 5% monthly interest
- (1) N = A(1+p), N is new value, A is the old value, p is percentage as a decimal
- (2) $F = P(1+p)^T$, F is future value, P is present value, p is periodic interest rate, T is number of periods
- (3) $P = Mq \frac{1-q^T}{1-q}$, P is present value, M is periodic payment, p is periodic interest rate, T is number of periods, q = 1/(1+p) helps discount future payments into the present
- (4) $\$100(1/1.05)\frac{1-(1/1.05)^{240}}{1-(1/1.05)}$
- (5) \$100 $(1.05)(1.2)^3$
- (6) $100/(1.05) + 100/(1.05)^2 + 100/(1.05)^3$
- $(7) \ \$100(1.05)^2 + \$100(1.05) + \$100$

Percentage Increase

1. If \$300 is increased by 25%, what is the result?

2. If \$300 is decreased by 12%, what is the result?


$$N = A(1+p)$$
= 300(1+-12) = 300 (.88) = 3264

3. If \$300 is increased by 10%, and the result is increased by 10%, what is the final result?

4. If \$300 is increased by 2%, the result is decreased by 3%, and that result is increased by 4%, what is the final result?

5. Which is the smaller number: (a) \$300 or (b) the result of first increasing \$200 by 50%, and then decreasing the result by 50%?

$$a = $300$$

 $b = 300(1+.5)(1-.5)$
 $= 200(1.5)(.5) = 150

Compound interest

1. How much does one pay back a year later, if one borrows \$300 at 1.5% per month interest?

$$F = P(1+p)^T$$
 $T = 12 \text{ months}$
= $300(1+.015)^{12} = 300(1.015)^{12} = [$358.68]$

2. How much can one borrow today at 1.5% per month interest, if one is willing to repay \$500 two years from now?

ow find can one borrow today at 1.3% per month interest, if one is wears from now?

$$F = P(1+p)^{T}$$
 $F = P(1+p)^{T}$
 $= P(1+0.15)^{24}$
 $= P(1.015)^{24}$
 $\Rightarrow P(1.4295)$

3. If one borrows at 19\% per month interest (crazy), how many months until the debt has doubled?

$$F = P(1+p)$$
 When the debt has doubled, $F = 2P$
 $2P = P(1+p)$
 $2 = (1+.19)$
 $1n 2 = In (10.19)$
 $1n 2 = T (In (1.19))$
 $1n 2 = T (In (1.19))$
 $1n 2 = T (In (1.19))$

The debt has doubled after about 4 months!!

The debt has doubled after about 4 months!!

4. If one borrows \$300 and repays \$336 a month later, what is the monthly interest rate?

F = P(1+p)
$$T=1$$
 month

 $336 = 300(1+p)$ $p=1/2$, so the monthly interest $\frac{336}{300} = 1+p$
 $\frac{336}{300} = 1+p$
 $\frac{1}{300} = 1+p$

5. Which is the smaller number: (a) The amount to repay a \$300 debt a year later at 2% per month interest, (b) The amount to repay a \$300 debt a year later at 0.5\% per week interest (assuming 52 weeks in a year)?

(a)
$$F = P(1+p)^T$$
 $T = 12 months$
= 300(1+.02)¹²
= 300(1.02)¹² = \$380.47

(a) is the smaller number

$$= 300(1.02) = 300.47$$
(b) $F = P(1+p)^{T} = 52$ weeks
$$= 300(1 + .005)^{52}$$

$$= 300(1005)^{52} = $388.83$$

Amortized loans

1. How much do you owe after 6 months if you borrow \$300 at 1.3% per month interest and pay back \$50 at the end of every month (a total of \$300)?

$$P = Mq \frac{1-q^{+}}{1-q}$$

$$= \frac{1}{1+p} = \frac{1}{1.013}$$
This would have paid if off if we had only borrowed \$286.81, but we borrowed more.
$$= 50q \frac{(1-q^{6})}{(1-q^{6})} = {}^{4}286.81$$

$$= 300 - 286.81 = 13.19$$
We can just consider that amount separately compounded monthly.
$$= 50q \frac{(1-q^{6})}{(1-q^{6})} = {}^{4}286.81$$
We still owe (13.19)(1.013) = ${}^{5}14.25$

2. How much can you borrow now at $\underline{1\%}$ per month if you are willing to pay back \$50 every month for a year?

$$P = Mq \frac{1-qT}{1-q}$$
 $q = \frac{1}{1+101}$ $T = 12$ months $P = ?$
= $50q \frac{(1-q^{12})}{1-q} = \sqrt{562.75}$

3. How much should you pay back every month if you want to borrow \$500 now at 1% per month and be done paying it back after 7 months?

$$P = Mq \frac{1-qT}{1-q} \quad q = \frac{1}{1+c1} \quad T = 7 \text{ months } M = \frac{3}{1-q}$$

$$500 = Mq \frac{(1-qT)}{1-q} \quad M = \frac{500}{6.72819} = 74.31$$

$$500 = M (6.72819...)$$

4. Which is the smaller amount: (a) \$50 per month for a year, or (b) the monthly payment to repay a \$500 at 3% per month interest in a year.

Which is smaller per month?

(a) \$50

(b)
$$P = Mg(\frac{1-g^{-1}}{1-g}) \quad g = \frac{1}{1+.03} \quad M = \frac{3}{1-g}$$

(a) is smaller.

500 = $Mg(\frac{1-g^{-2}}{1-g})$

$$50.23 = \frac{500}{(8(1-8)^2)} = M$$