MA162: Finite mathematics

Jack Schmidt

University of Kentucky

November 14, 2012

Schedule:

- Exam 4 is Thursday, December 13th, 6pm to 8pm in: CB110 (Sec 001, 002), CB114 (Sec 003, 004), FB200 (Sec 005, 006)
- HW 7A is due Friday, November 23rd, 2012
- HW 7B is due Friday, November 30th, 2012
- HW 7C is due Friday, December 7th, 2012

Today we will cover 7.1: Sample spaces

Final Exam

- Chapter 7: Probability
 - Counting based probability
 - Counting based probability
 - Empirical probability
 - Conditional probability
- Cumulative
 - Ch 2: Setting up and reading the answer from a linear system
 - Ch 3: Graphically solving a 2 variable LPP
 - Ch 4: Setting up a multi-var LPP
 - Ch 4: Reading and interpreting answer form a multi-var LPP

Probability

• Our last chapter is on probability.

Probability

- Our last chapter is on probability.
- Life is uncertain, every snowflake is different

- Our last chapter is on probability.
- Life is uncertain, every snowflake is different
- In the aggregate, life is more certain

- Our last chapter is on probability.
- Life is uncertain, every snowflake is different
- In the aggregate, life is more certain
- If you flip a coin once, it will be heads or tails, but who knows which?

- Our last chapter is on probability.
- Life is uncertain, every snowflake is different
- In the aggregate, life is more certain
- If you flip a coin once, it will be heads or tails, but who knows which?
- If you flip a coin 1000 times, it will be heads between 450 and 550 times (with a 99.9% probability).

• Reality is mysterious and wonderful It is worth observing.

- Reality is mysterious and wonderful It is worth observing.
- Some things you observe are unique: a sunset, a cloud

- Reality is mysterious and wonderful It is worth observing.
- Some things you observe are unique: a sunset, a cloud
- Some things you observe are quite reproducible: when you flip a coin it lands on heads or tails, and each happens about 50% of the time

- Reality is mysterious and wonderful It is worth observing.
- Some things you observe are unique: a sunset, a cloud
- Some things you observe are quite reproducible: when you flip a coin it lands on heads or tails, and each happens about 50% of the time
- An **experiment** is a planned observation of life whose goal is (usually) to confirm a reproducible result

- Reality is mysterious and wonderful It is worth observing.
- Some things you observe are unique: a sunset, a cloud
- Some things you observe are quite reproducible: when you flip a coin it lands on heads or tails, and each happens about 50% of the time
- An **experiment** is a planned observation of life whose goal is (usually) to confirm a reproducible result
- For example, we might plan an experiment where we flip 10 coins and count how many heads show up.

Sample spaces

• Our understanding of life is shaped by the constructs we place upon it

- Our understanding of life is shaped by the constructs we place upon it
- Our understanding of coin flipping uses the construct of "heads" and "tails" to divide all of life's mysteries into two possible outcomes

- Our understanding of life is shaped by the constructs we place upon it
- Our understanding of coin flipping uses the construct of "heads" and "tails" to divide all of life's mysteries into two possible outcomes
- A **sample space** is a list of all the possible outcomes of an experiment

- Our understanding of life is shaped by the constructs we place upon it
- Our understanding of coin flipping uses the construct of "heads" and "tails" to divide all of life's mysteries into two possible outcomes
- A **sample space** is a list of all the possible outcomes of an experiment
- If we pull one card from the deck, then our sample space can be the set of all 52 (or 54) cards in the deck.

- Our understanding of life is shaped by the constructs we place upon it
- Our understanding of coin flipping uses the construct of "heads" and "tails" to divide all of life's mysteries into two possible outcomes
- A **sample space** is a list of all the possible outcomes of an experiment
- If we pull one card from the deck, then our sample space can be the set of all 52 (or 54) cards in the deck.
- If we draw five cards from the deck and don't care about order, then there are $\frac{52}{5}\frac{51}{4}\frac{50}{3}\frac{49}{2}\frac{48}{1} = 2,598,960$ possible outcomes

• Many people rush through life and miss the details

- Many people rush through life and miss the details
- Suppose the experiment was flipping a single coin three times

- Many people rush through life and miss the details
- Suppose the experiment was flipping a single coin three times
- A reasonable sample space is {*HHH*, *HHT*, *HTH*, *HTT*, *THH*, *THT*, *TTH*, *TTT*}

- Many people rush through life and miss the details
- Suppose the experiment was flipping a single coin three times
- A reasonable sample space is {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
- However some people might divide this up into "more heads than tails" and "more tails than heads"

- Many people rush through life and miss the details
- Suppose the experiment was flipping a single coin three times
- A reasonable sample space is {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
- However some people might divide this up into "more heads than tails" and "more tails than heads"
- Each of these is an event, a subset of the sample space

- Many people rush through life and miss the details
- Suppose the experiment was flipping a single coin three times
- A reasonable sample space is {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
- However some people might divide this up into "more heads than tails" and "more tails than heads"
- Each of these is an event, a subset of the sample space
- $Mhtt = \{HHH, HHT, HTH, THH\}$ has four sample points in it

Mutually exclusive

• You cannot both have more heads than tails and more tails than heads. If you had a tie, then neither was true!

- You cannot both have more heads than tails and more tails than heads. If you had a tie, then neither was true!
- Two events are **mutually exclusive** if their intersection is empty; that is, it is not possible for both to happen at the same time.

- You cannot both have more heads than tails and more tails than heads. If you had a tie, then neither was true!
- Two events are **mutually exclusive** if their intersection is empty; that is, it is not possible for both to happen at the same time.
- Not all events are mutually exclusive.

- You cannot both have more heads than tails and more tails than heads. If you had a tie, then neither was true!
- Two events are **mutually exclusive** if their intersection is empty; that is, it is not possible for both to happen at the same time.
- Not all events are mutually exclusive.
- For instance the event "get a head on the very first try!" is {HHH, HHT, HTH, HTT} and so the intersection with "more heads than tails" is {HHH, HHT, HTH}

1. Informally describe the experiment

- 1. Informally describe the experiment
- 2. Setup the sample space; decide the possible outcomes

- 1. Informally describe the experiment
- 2. Setup the sample space; decide the possible outcomes
- 3. Gather possible outcomes into interesting events

- 1. Informally describe the experiment
- 2. Setup the sample space; decide the possible outcomes
- 3. Gather possible outcomes into interesting events
- 4. (Next section) describe how often an event is likely to occur if the experiment is repeated many times. This is the **probability**.

- 1. Informally describe the experiment
- 2. Setup the sample space; decide the possible outcomes
- 3. Gather possible outcomes into interesting events
- 4. (Next section) describe how often an event is likely to occur if the experiment is repeated many times. This is the **probability**.
- 5. (STA291) After actually running the experiment, decide whether your probability calculation reflects reality

- 1. Informally describe the experiment
- 2. Setup the sample space; decide the possible outcomes
- 3. Gather possible outcomes into interesting events
- 4. (Next section) describe how often an event is likely to occur if the experiment is repeated many times. This is the **probability**.
- 5. (STA291) After actually running the experiment, decide whether your probability calculation reflects reality
- 6. (STAxxx) Decide how many times to run the experiment before you can decide whether your probability calculation reflected reality

- We learned the words **experiment**, **sample space**, **event**, and **mutually exclusive**
- HW 7A is two questions. Easy questions.
- HW 7B and 7C are pretty similar to HW 6ABC
- Monday we will cover 7.2: Probability
- Depending on time we might cover it today

Probability

• Lexington's Balagula Theatre company had a deal where you could pay \$15 flat, or \$21 minus the throw of two dice. If you go with a large group of people, which should you as a group do?

Probability

- Lexington's Balagula Theatre company had a deal where you could pay \$15 flat, or \$21 minus the throw of two dice. If you go with a large group of people, which should you as a group do?
- What is the probability that we save money by rolling?

Probability

- Lexington's Balagula Theatre company had a deal where you could pay \$15 flat, or \$21 minus the throw of two dice. If you go with a large group of people, which should you as a group do?
- What is the probability that we save money by rolling?
- The sample space is all 36 pairs $\{(1,1), (1,2), \dots, (6,6)\}$.

Probability

- Lexington's Balagula Theatre company had a deal where you could pay \$15 flat, or \$21 minus the throw of two dice. If you go with a large group of people, which should you as a group do?
- What is the probability that we save money by rolling?
- The sample space is all 36 pairs $\{(1,1), (1,2), \ldots, (6,6)\}$.
- The event "rolling saved us money" is all those pairs that total to more than 6.

Probability

- Lexington's Balagula Theatre company had a deal where you could pay \$15 flat, or \$21 minus the throw of two dice. If you go with a large group of people, which should you as a group do?
- What is the probability that we save money by rolling?
- The sample space is all 36 pairs $\{(1,1), (1,2), \ldots, (6,6)\}$.
- The event "rolling saved us money" is all those pairs that total to more than 6.
- There are 21 such pairs, and if all pairs are equally likely (the dice are fair), then that is $\frac{21}{36} = \frac{7}{12} \approx 58\%$

• What is the chance of getting 3 in a row if you flip a coin 5 times?

- What is the chance of getting 3 in a row if you flip a coin 5 times?
- The sample space is all $2^5 = 32$ sequences of H,T.

- What is the chance of getting 3 in a row if you flip a coin 5 times?
- The sample space is all $2^5 = 32$ sequences of H,T.
- The event is {*HHH* * *, *THHH**, **THHH*} or their opposites with 2(4 + 2 + 2) = 16 things in it.

- What is the chance of getting 3 in a row if you flip a coin 5 times?
- The sample space is all $2^5 = 32$ sequences of H,T.
- The event is {*HHH* * *, *THHH**, **THHH*} or their opposites with 2(4 + 2 + 2) = 16 things in it.
- 16 ways to win, 32 ways total, so $\frac{16}{32} = \frac{1}{2} = 50\%$ chance

- What is the chance of getting 3 in a row if you flip a coin 5 times?
- The sample space is all $2^5 = 32$ sequences of H,T.
- The event is {*HHH* * *, *THHH**, **THHH*} or their opposites with 2(4 + 2 + 2) = 16 things in it.
- 16 ways to win, 32 ways total, so $\frac{16}{32} = \frac{1}{2} = 50\%$ chance
- Explicitly:

ННННН, ННННТ, НННТН, НННТТ, ННТТТ, НТННН, НТТТН, НТТТТ, ТНННН, ТНННТ, ТНТТТ, ТТННН, ТТТНН, ТТТНТ, ТТТТН, ТТТТТ

• The chance of getting 3 heads out of 3 flips is not the same as the chance of getting 2 heads out of 3 flips.

- The chance of getting 3 heads out of 3 flips is not the same as the chance of getting 2 heads out of 3 flips.
- What is the probability of getting an odd number of heads?

- The chance of getting 3 heads out of 3 flips is not the same as the chance of getting 2 heads out of 3 flips.
- What is the probability of getting an odd number of heads?
- Some experimenting reveals that about 1/8th of the time you get 3 heads, 3/8th of the time you get 2 heads, 3/8th of the time you get 1 heads, and 1/8th of the time you get 3 tails.

- The chance of getting 3 heads out of 3 flips is not the same as the chance of getting 2 heads out of 3 flips.
- What is the probability of getting an odd number of heads?
- Some experimenting reveals that about 1/8th of the time you get 3 heads, 3/8th of the time you get 2 heads, 3/8th of the time you get 1 heads, and 1/8th of the time you get 3 tails.
- Hence it should be about $\frac{1}{8} + \frac{3}{8} = 50\%$ of the time to get either 1 or 3 heads

- The chance of getting 3 heads out of 3 flips is not the same as the chance of getting 2 heads out of 3 flips.
- What is the probability of getting an odd number of heads?
- Some experimenting reveals that about 1/8th of the time you get 3 heads, 3/8th of the time you get 2 heads, 3/8th of the time you get 1 heads, and 1/8th of the time you get 3 tails.
- Hence it should be about $\frac{1}{8} + \frac{3}{8} = 50\%$ of the time to get either 1 or 3 heads
- It should be the same for getting an odd number of tails, right? Tails, heads, what is the difference?

- The chance of getting 3 heads out of 3 flips is not the same as the chance of getting 2 heads out of 3 flips.
- What is the probability of getting an odd number of heads?
- Some experimenting reveals that about 1/8th of the time you get 3 heads, 3/8th of the time you get 2 heads, 3/8th of the time you get 1 heads, and 1/8th of the time you get 3 tails.
- Hence it should be about $\frac{1}{8} + \frac{3}{8} = 50\%$ of the time to get either 1 or 3 heads
- It should be the same for getting an odd number of tails, right? Tails, heads, what is the difference?
- But you either get an odd number of heads, or an odd number of tails, and not both, so each should be about equally likely: 50%

• Suppose every day, every light bulb has a 0.1% chance of breaking, and you have 100 lightbulbs in your building.

- Suppose every day, every light bulb has a 0.1% chance of breaking, and you have 100 lightbulbs in your building.
- How many lightbulbs should you keep on hand each week to handle the breakage?

- Suppose every day, every light bulb has a 0.1% chance of breaking, and you have 100 lightbulbs in your building.
- How many lightbulbs should you keep on hand each week to handle the breakage?
- Well, worst case scenario is 100 bulbs break every day all week, so we could keep 700 bulbs in stock.

- Suppose every day, every light bulb has a 0.1% chance of breaking, and you have 100 lightbulbs in your building.
- How many lightbulbs should you keep on hand each week to handle the breakage?
- Well, worst case scenario is 100 bulbs break every day all week, so we could keep 700 bulbs in stock.
- However, that's not very likely to happen and quite expensive to plan for.

- Suppose every day, every light bulb has a 0.1% chance of breaking, and you have 100 lightbulbs in your building.
- How many lightbulbs should you keep on hand each week to handle the breakage?
- Well, worst case scenario is 100 bulbs break every day all week, so we could keep 700 bulbs in stock.
- However, that's not very likely to happen and quite expensive to plan for.
- $\bullet\,$ If each bulb is independent, that is $(0.1\%)^{700}\approx 0\%$ chance of this happening

• Your coworker says, "one should be fine" but refuses to explain where they got the number (you suspect it is because they already have one).

- Your coworker says, "one should be fine" but refuses to explain where they got the number (you suspect it is because they already have one).
- What are the odds that 1 is enough?

- Your coworker says, "one should be fine" but refuses to explain where they got the number (you suspect it is because they already have one).
- What are the odds that 1 is enough?
- The odds of none going out is $(99.9\%)^{700} \approx 50\%$, the odds of one are $700 \cdot (0.1\%)(99.9\%)^{699} \approx 35\%$

- Your coworker says, "one should be fine" but refuses to explain where they got the number (you suspect it is because they already have one).
- What are the odds that 1 is enough?
- The odds of none going out is $(99.9\%)^{700} \approx 50\%$, the odds of one are $700 \cdot (0.1\%)(99.9\%)^{699} \approx 35\%$
- Total is: 0.844 = 84.4% chance that at most one breaks, so not too bad. Every 6 weeks you'll have a light out and no replacement, but not too bad.

• You move to a bigger warehouse; this one has 1000 lightbulbs

- You move to a bigger warehouse; this one has 1000 lightbulbs
- How many lightbulbs should you keep on hand each week to handle the breakage?

- You move to a bigger warehouse; this one has 1000 lightbulbs
- How many lightbulbs should you keep on hand each week to handle the breakage?
- 10 times as many bulbs, so maybe 10 times as many spares?

- You move to a bigger warehouse; this one has 1000 lightbulbs
- How many lightbulbs should you keep on hand each week to handle the breakage?
- 10 times as many bulbs, so maybe 10 times as many spares?
- What are the odds that 10 is enough?

- You move to a bigger warehouse; this one has 1000 lightbulbs
- How many lightbulbs should you keep on hand each week to handle the breakage?
- 10 times as many bulbs, so maybe 10 times as many spares?
- What are the odds that 10 is enough?
- The odds of none going out is $(99.9\%)^{7000} \approx 0.1\%$, exactly one are $7000 \cdot (0.1\%)(99.9\%)^{6999} \approx 0.6\%$, exactly two are $\frac{7000 \cdot 6999}{2} \cdot (0.1\%)^2 (99.9\%)^{6998} \approx 2.2\%$, ...

0 1 2 3 4 5 6 7 8 9 10 0.1 0.6 2.2 5.2 9.1 12.7 14.9 14.9 13.0 10.1 7.0

- You move to a bigger warehouse; this one has 1000 lightbulbs
- How many lightbulbs should you keep on hand each week to handle the breakage?
- 10 times as many bulbs, so maybe 10 times as many spares?
- What are the odds that 10 is enough?
- The odds of none going out is $(99.9\%)^{7000} \approx 0.1\%$, exactly one are $7000 \cdot (0.1\%)(99.9\%)^{6999} \approx 0.6\%$, exactly two are $\frac{7000 \cdot 6999}{2} \cdot (0.1\%)^2 (99.9\%)^{6998} \approx 2.2\%$, ...

0 1 2 3 4 5 6 7 8 9 10 0.1 0.6 2.2 5.2 9.1 12.7 14.9 14.9 13.0 10.1 7.0

• Total is: 0.902 = 90.2% chance that at most ten break, so really we're even more certain to be ok now; every 10 weeks we'll be short a bulb.

Bigger is better

• What if there were 10,000 lightbulbs?

Bigger is better

- What if there were 10,000 lightbulbs?
- Instead of 100 bulbs, you only need 81 bulbs to ensure 90% availability

- What if there were 10,000 lightbulbs?
- Instead of 100 bulbs, you only need 81 bulbs to ensure 90% availability
- ${\ensuremath{\,\circ}}$ What if there were 100,000 lightbulbs? Only 733 needed for 90%

- What if there were 10,000 lightbulbs?
- Instead of 100 bulbs, you only need 81 bulbs to ensure 90% availability
- What if there were 100,000 lightbulbs? Only 733 needed for 90%
- The larger the population, the less extreme the whims of fortune

- What if there were 10,000 lightbulbs?
- Instead of 100 bulbs, you only need 81 bulbs to ensure 90% availability
- What if there were 100,000 lightbulbs? Only 733 needed for 90%
- The larger the population, the less extreme the whims of fortune
- This is why insurance is important; the risk to one person is great

- What if there were 10,000 lightbulbs?
- Instead of 100 bulbs, you only need 81 bulbs to ensure 90% availability
- What if there were 100,000 lightbulbs? Only 733 needed for 90%
- The larger the population, the less extreme the whims of fortune
- This is why insurance is important; the risk to one person is great
- The risk to 10,000 people is quite small, much less than 10,000 times the risk of one

• Suppose Eodred and Sir Dave are mortal enemies, and amongst the five Knights of the realm, four randomly chosen Knights will be sitting at the round table tonight. How likely is it that the mortal enemies will sit next to each other?

- Suppose Eodred and Sir Dave are mortal enemies, and amongst the five Knights of the realm, four randomly chosen Knights will be sitting at the round table tonight. How likely is it that the mortal enemies will sit next to each other?
- Sample space is:

ABCD, ABCE, ABDC, AB[3-]DE, ABEC, AB[3-]ED, ACBD, ACBE, ACDB, AC[3-]DE, ACEB, AC[3-]ED, ADBC, ADBE, ADCB, ADCE, A[3-]DEB, A[3-]DEC, AEBC, AEBD, AECB, AECD, A[3-]EDB, A[3-]EDC, BC[3-]DE, BC[3-]ED, BDCE, B[3-]DEC, BECD, B[3-]EDC

- Suppose Eodred and Sir Dave are mortal enemies, and amongst the five Knights of the realm, four randomly chosen Knights will be sitting at the round table tonight. How likely is it that the mortal enemies will sit next to each other?
- Sample space is:

ABCD, ABCE, ABDC, AB[3-]DE, ABEC, AB[3-]ED, ACBD, ACBE, ACDB, AC[3-]DE, ACEB, AC[3-]ED, ADBC, ADBE, ADCB, ADCE, A[3-]DEB, A[3-]DEC, AEBC, AEBD, AECB, AECD, A[3-]EDB, A[3-]EDC, BC[3-]DE, BC[3-]ED, BDCE, B[3-]DEC, BECD, B[3-]EDC

• The event is all those with DE or ED (be careful of wraparound)

- Suppose Eodred and Sir Dave are mortal enemies, and amongst the five Knights of the realm, four randomly chosen Knights will be sitting at the round table tonight. How likely is it that the mortal enemies will sit next to each other?
- Sample space is:

ABCD, ABCE, ABDC, AB[3-]DE, ABEC, AB[3-]ED, ACBD, ACBE, ACDB, AC[3-]DE, ACEB, AC[3-]ED, ADBC, ADBE, ADCB, ADCE, A[3-]DEB, A[3-]DEC, AEBC, AEBD, AECB, AECD, A[3-]EDB, A[3-]EDC, BC[3-]DE, BC[3-]ED, BDCE, B[3-]DEC, BECD, B[3-]EDC

- The event is all those with DE or ED (be careful of wraparound)
- 12 bad out of 30 total is 40% chance for showers (of fists)