MA162: Finite mathematics

Jack Schmidt

University of Kentucky

February 18, 2013

Schedule:

- HW 3.1-3.3 (Late)
- HW 4.1 due Friday, Feb 22, 2013
- HW 2.5-2.6 due Friday, Mar 01, 2013
- Exam 2, Monday, Mar 04, 2013, from 5pm to 7pm

Today we will cover 4.1: solving larger linear programming problems

• On the first exam we tried to solve:

"While using all resources, maximize profit"

Cost	Output X	Output Y	Output Z	Output W	Available
Resource 1	4 min	3 min	4 min	4 min	60 hours
Resource 2	24 min	22 min	28 min	0 min	416 hours
Resource 3	12 min	9 min	15 min	6 min	204 hours
Profit	\$1	\$1	\$1	\$1	

• On the first exam we tried to solve:

"While using all resources, maximize profit"

Cost	Output X	Output Y	Output Z	Output W	Available
Resource 1	4 min	3 min	4 min	4 min	60 hours
Resource 2	24 min	22 min	28 min	0 min	416 hours
Resource 3	12 min	9 min	15 min	6 min	204 hours
Profit	\$1	\$1	\$1	\$1	

• Part (a) addressed the "while using all resources" part:

$\begin{bmatrix} x \end{bmatrix}$	Y	Ζ	W	RHS
4	3	4	4	(60)(60)
24	22	28	0	(416)(60)
12	9	15	6	(204)(60)

• On the first exam we tried to solve:

"While using all resources, maximize profit"

Cost	Output X	Output Y	Output Z	Output W	Available
Resource 1	4 min	3 min	4 min	4 min	60 hours
Resource 2	24 min	22 min	28 min	0 min	416 hours
Resource 3	12 min	9 min	15 min	6 min	204 hours
Profit	\$1	\$1	\$1	\$1	

• Part (a) addressed the "while using all resources" part:

Γ	x	Y	Ζ	W	RHS		$\begin{bmatrix} x \end{bmatrix}$	Y	Ζ	W	RHS]
l	4	3	4	4	(60)(60)	RREF it!	1	0	0	6	150
l	24	22	28	0	(416)(60)	\longrightarrow	0	1	0	-4	360
l	12	9	15	6	(204)(60)		0	0	1	-2	480

• On the first exam we tried to solve:

"While using all resources, maximize profit"

Cost	Output X	Output Y	Output Z	Output W	Available
Resource 1	4 min	3 min	4 min	4 min	60 hours
Resource 2	24 min	22 min	28 min	0 min	416 hours
Resource 3	12 min	9 min	15 min	6 min	204 hours
Profit	\$1	\$1	\$1	\$1	

• Part (a) addressed the "while using all resources" part:

$\begin{bmatrix} x \end{bmatrix}$	Y	Ζ	W	RHS		∇X	Y	Ζ	W	RHS
4	3	4	4	(60)(60)	RREF it!	1	0	0	6	150
24	22	28	0	(416)(60)	\longrightarrow	0	1	0	-4	360
12	9	15	6	(204)(60)		0	0	1	-2	480

• General way to use all resources is

(X = 150 - 6W, Y = 360 + 4W, Z = 480 + 2W, W = FREE)

• Part (b) addressed the "maximize profit" part:

$$P = X + Y + Z + W$$

= (150 - 6W) + (360 + 4W) + (480 + 2W) + W
= 990 + W

- Clearly making W large increases profit
- But how large? Too large and it'll be impossible!
- We can solve an (easy) algebra problem, but can't we do it without algebra?

Why we should keep pivotting after RREF

- W can be anything we want, but we don't know what we want!
- We look at the other variables, do any have a -W in them?

(X = 150 - 6W, Y = 360 + 4W, Z = 480 + 2W, W = FREE)

• Let's make X be free, and solve for W using X

•
$$X = 150 - 6W$$
 means $W = 25 - rac{1}{6}X$

- $P = 990 + 25 \frac{1}{6}X$, X is free
- How big should X be? Every X is costing us money. X=0, duh.

• So
$$W = 25$$
, $Y = 460$, $Z = 530$, and $X = 0$.

 ${\, \bullet \,}$ a '+W' in profit and '-W' in a variable is hard

• Switch which variables are free to fix it

• (A '+W' in profit with no '-W' in variables means unlimited profit!)

As matrices

- The pivot is which variable you solve for
- To solve for W in the X equation, we need to change pivots

$$\begin{bmatrix} X & Y & Z & W & RHS \\ (1) & 0 & 0 & 6 & 150 \\ 0 & (1) & 0 & -4 & 360 \\ 0 & 0 & (1) & -2 & 480 \end{bmatrix} \xrightarrow{R_1/6} \begin{bmatrix} X & Y & Z & W & RHS \\ \frac{1}{6} & 0 & 0 & (1) & 25 \\ 0 & (1) & 0 & -4 & 360 \\ 0 & 0 & (1) & -2 & 480 \end{bmatrix}$$
$$\xrightarrow{R_2+4R_1} \begin{bmatrix} X & Y & Z & W & RHS \\ 1/6 & 0 & 0 & (1) & 25 \\ 4/6 & (1) & 0 & 0 & 460 \\ 2/6 & 0 & (1) & 0 & 530 \end{bmatrix}$$

• $(X = FREE, Y = 460 - \frac{2}{3}X, Z = 530 - \frac{1}{3}X, W = 25 - \frac{1}{6}X)$

• What about P? Could use algebra, but...

As matrices, really

• P = X + Y + Z + W is just another equation

•
$$-X - Y - Z - W + P = 0$$
 is more matrixy

$$\begin{bmatrix} X & Y & Z & W & P & RHS \\ 1/6 & 0 & 0 & 1 & 0 & 25 \\ 4/6 & 1 & 0 & 0 & 0 & 460 \\ 2/6 & 0 & 1 & 0 & 0 & 530 \\ \hline -1 & -1 & -1 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{R_4 + (R_1 + R_2 + R_3)} \begin{bmatrix} X & Y & Z & W & P & RHS \\ 1/6 & 0 & 0 & 1 & 0 & 25 \\ 4/6 & 1 & 0 & 0 & 0 & 460 \\ 2/6 & 0 & 1 & 0 & 0 & 530 \\ \hline \frac{1}{6} & 0 & 0 & 0 & 1 & 1015 \end{bmatrix}$$

• $(X = \text{Free}, Y = 460 - \frac{2}{3}X, Z = 530 - \frac{1}{3}X, W = 25 - \frac{1}{6}X, P = 1015 - \frac{1}{6}X)$

As matrices, simple RREF

- Doing row ops ourselves can be tedious
- Ask the calculator to swap the columns so they are in the "right" order

 $\begin{bmatrix} X & Y & Z & W & P & RHS \\ 4 & 3 & 4 & 4 & 0 & (60)(60) \\ 24 & 22 & 28 & 0 & 0 & (416)(60) \\ 12 & 9 & 15 & 6 & 0 & (204)(60) \\ -1 & -1 & -1 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{\text{Swapl}}$ $\begin{bmatrix} W & Y & Z & P & X & RHS \\ 4 & 3 & 4 & 0 & 4 & (60)(60) \\ 0 & 22 & 28 & 0 & 24 & (416)(60) \\ 6 & 9 & 15 & 0 & 12 & (204)(60) \\ -1 & -1 & -1 & 1 & -1 & 0 \end{bmatrix} \xrightarrow{\text{RREFl}} \begin{bmatrix} W & Y & Z & P & X & RHS \\ \hline \hline 0 & 0 & 0 & 0 & 0 & 1/6 & 25 \\ 0 & 0 & 0 & 0 & 2/3 & 460 \\ 0 & 0 & 0 & 0 & 0 & 1/3 & 530 \\ 0 & 0 & 0 & 0 & 0 & 1/6 & 1015 \end{bmatrix}$

• W = 25 - X/6, Y = 460 - 2X/3, Z = 530 - X/3, P = 1015 - X/6, X = FREE

• P = 1015 - X/6? I guess X = 0! and W = 25, Y = 460, Z = 530

Cost	Output X	Output Y	Output Z	Output W	Available
Resource 1	4 min	3 min	4 min	4 min	60 hours
Resource 2	24 min	22 min	28 min	0 min	416 hours
Resource 3	12 min	9 min	15 min	6 min	204 hours
Profit	\$1	\$1	\$1	\$1	

• Allow resource 2 to be wasted ("fire the sewers")

- Should we just make W as big as possible? ("just make scarves")
- Imagine a new product U that uses one minute of sewing time, but gives no profit
- Any leftover sewing time can be spent on U
- So 24X + 22Y + 28Z + 0W + 1U = (416)(60)

Exam 1 #9

Cost	Output X	Output Y	Output Z	Output W	Output U	Available
Resource 1	4 min	3 min	4 min	4 min	0 min	60 hours
Resource 2	24 min	22 min	28 min	0 min	1 min	416 hours
Resource 3	12 min	9 min	15 min	6 min	0 min	204 hours
Profit	\$1	\$1	\$1	\$1	\$0	

• Equations are:

Γ	X	Y	Ζ	W	U	Ρ	RHS -
L	4	3	4	4	0	0	3600
	24	22	28	0	1	0	24960
L	12	9	15	6	0	0	12240
L	-1	-1	-1	$^{-1}$	0	1	0

• RREF is easy (just update the U column)

Г	X	Y	Ζ	W	U	Ρ	RHS -	1
	1/6	0	0	1	-1/32	0	25	
	2/3	1	0	0	1/8	0	460	
	1/3	0	1	0	-1/16	0	530	
L	1/6	0	0	0	1/32	1	1015 _	

Writing this in terms of equations we get

 $\left(\begin{array}{ccc} X = {\rm free}, & Y = 460 - 2x/3 - u/8, & Z = 530 - x/3 + u/16, \\ W = 25 - x/6 + u/32, & U = {\rm free}, & P = 1015 - x/6 - u/32 \end{array} \right)$

- $\left(\begin{array}{ccc} X = {\rm Free}, & Y = 460 2x/3 u/8, & Z = 530 x/3 + u/16, \\ W = 25 x/6 + u/32, & U = {\rm Free}, & P = 1015 x/6 u/32 \end{array} \right)$
- X and U are free, what should set them to?
- P = 1015 x/6 u/32 and $x \ge 0$, $u \ge 0$
- Each unused sewing minute costs us around \$0.03!
- If we want to do better, we also have to allow unused cutting and packing minutes.
- Each new unused resource is another column in the matrix, but we have seen that is not hard!

Cost	Output X	Output Y	Output Z	Output W	Output T	Output U	Output V	Available
Resource 1	4 min	3 min	4 min	4 min	1 min	0 min	0 min	60 hours
Resource 2	24 min	22 min	28 min	0 min	0 min	1 min	0 min	416 hours
Resource 3	12 min	9 min	15 min	6 min	0 min	0 min	1 min	204 hours
Profit	\$1	\$1	\$1	\$1	\$0	\$0	\$0	

• Equations are:

$$\begin{bmatrix} X & Y & Z & W & T & U & V & P & RHS \\ 4 & 3 & 4 & 4 & (1 & 0 & 0 & 0 & 3600 \\ 24 & 22 & 28 & 0 & 0 & (1 & 0 & 0 & 24960 \\ 12 & 9 & 15 & 6 & 0 & 0 & (1 & 0 & 12240 \\ \hline -1 & -1 & -1 & -1 & 0 & 0 & 0 & (1 & 0 \end{bmatrix}$$

 It is already in RREF, well, if the columns had been ordered T, U, V, P, X, Y, Z, RHS

Exam 1 #10

• Order the columns W, Y, V, P, X, Z, T, U, RHS

Γ	- W	Y	V	Ρ	Х	Ζ	Т	U	RHS -	l
ļ	4	3	0	0	4	4	1	0	3600	l
l	0	22	0	0	24	28	0	1	24960	
	6	9	1	0	12	15	0	0	12240	
L		$^{-1}$	0	1	-1	$^{-1}$	0	0	0	

RREF it!

Γ	W	Y	V	Ρ	X	Ζ	Т	U	RHS
	1	0	0	0	2/11	1/22	1/4	-3/88	540/11
	0	1	0	0	12/11	14/11	0	1/22	12480/11
	0	0	1	0	12/11	36/11	-3/2	-9/44	19080/11
L	0	0	0	1	3/11	7/22	1/4	1/88	13020/11

• $P = \frac{13020}{11} - \frac{3X}{11} - \frac{7Z}{22} - \frac{T}{4} - \frac{U}{88}$

• Better make X = Z = T = U = 0! $P = 13020/11 \approx 1183.64

• Compare to "fire the sewers, and just make scarves" at \$900

- Get the system to RREF, so it is "easy" to find solutions
- In the equation for P, any '+' free variables mean we are not done
- Want those variables to be big, but ...
- $\bullet\,$ We try to swap who is free and who is $(\!\!\!\!1)$
- In our examples today, there was only one choice of swap
- Next class: which one do we swap if there is a choice?