Today's LPP is a resource allocation prob	lem:
---	------

Cost	Output X	Output Y	Output Z	Output W	Available
Resource 1	4 min	3 min	$4 \min$	$4 \min$	Exactly 60 hours
Resource 2	24 min	$22 \min$	$28 \min$	$0 \min$	Exactly 416 hours
Resource 3	$12 \min$	$9 \min$	$15 \min$	$6 \min$	Exactly 204 hours
Profit	\$1	\$1	\$1	\$1	

How many X, Y, Z, and W should one make to maximize the profit while using all the resources? (a) Write this as a system of equations, including the profit.

(b) Write this as a matrix. Use the columns in this order: X, Y, Z, P, W.

(c) Use your calculator to find its RREF.

(d) Now use four row ops to make the W column have the (1) in the first row.

(e) Write this as equations, solving for each (1) variable.

(f) What value of the free variable seems like a good idea?

MA162 2013-02-18

Cost	Output X	Output Y	$\mathbf{Output} \ \mathbf{Z}$	Output W	Ava	ilable
Resource 1	4 min	3 min	$4 \min$	$4 \min$	Exactly 60	hours
Resource 2	24 min	$22 \min$	$28 \min$	$0 \min$	At most 416	hours
Resource 3	12 min	$9 \min$	$15 \min$	$6 \min$	Exactly 204	hours
Profit	\$1	\$1	\$1	\$1		
or						
Cost	Output X	Output Y	$\mathbf{Output} \ \mathbf{Z}$	Output W	Output U	Available
Resource 1	4 min	3 min	$4 \min$	4 min	0 min	Exactly 60 hours
Resource 2	24 min	$22 \min$	$28 \min$	$0 \min$	$1 \min$	Exactly 416 hours
Resource 3	12 min	$9 \min$	$15 \min$	$6 \min$	$0 \min$	Exactly 204 hours
Profit	\$1	\$1	\$1	\$1	\$0	

Today's second LPP is a resource allocation problem:

How many X, Y, Z, and W should one make, and how many minutes of resource 2 should you waste to maximize the profit while using

(a) Write this as a system of equations, including the profit.

(b) Write this as a matrix. Use the columns in this order: X, Y, Z, P, W, U

(c) Use your calculator to find its RREF.

- (d) Now use four row ops to make the W column have the (1.
- (e) Write this as equations, solving for each (1) variable.
- (f) What values of the two free variables seem like a good idea?

(g) What is the profit?