#### MA162: Finite mathematics

#### Jack Schmidt

University of Kentucky

February 25, 2013

#### Schedule:

- HW 3.1-3.3, 4.1 (Late)
- HW 2.5-2.6 due Friday, Mar 01, 2013
- Exam 2, Monday, Mar 04, 2013, from 5pm to 7pm
- HW 5.1 due Friday, Mar 08, 2013
- Spring Break, Mar 09-17, 2013
- HW 5.2-5.3 due Friday, Mar 22, 2013

Today we will cover 2.5: applications of matrix multiplication, and Ch 4: shadow prices

#### 2.5: Matrices as conversion tables

- A table lets you convert from one type of thing to another
- This table lets you convert from a client to his stock holdings:

|        | IBM | Google | Toyota | Texaco |
|--------|-----|--------|--------|--------|
| Bill ( | 18  | 16     | 12     | 14     |
| Jim    | 12  | 18     | 11     | 12 )   |

Bill has 18 shares of IBM

• This table lets you convert from a stock to its value:

|        | Today         | Yesterday | Daybefore |   |
|--------|---------------|-----------|-----------|---|
| IBM    | ( 3           | 3.01      | 2.99      | \ |
| Google | 4             | 3.99      | 3.99      |   |
| Toyota | 5             | 5.01      | 5.01      |   |
| Texaco | $\setminus 1$ | 1.02      | 1.03      | ) |

Google sold for \$3.99/share yesterday

• The source is on the left, and the destination is on the top

#### 2.5: Matrix multiplication to combine conversions

- We can combine this into a single conversion table
- (Client  $\rightarrow$  Stocks)  $\times$  (Stocks  $\rightarrow$  Value) = Client  $\rightarrow$  Value

| Bill<br>Jim | <i>IBM</i><br>(18<br>(12 | Google<br>16<br>18             | <i>Toyota</i><br>12<br>11     | <i>Texac</i><br>14<br>12   | )                         | ×                          | IBM<br>Google<br>Toyota<br>Texaco |   | <i>Today</i><br>3<br>4<br>5<br>1 | Yesterday<br>3.01<br>3.99<br>5.01<br>1.02 | y Day<br>2<br>3 | /before<br>2.99<br>3.99<br>5.01<br>1.03 | ···· ) |
|-------------|--------------------------|--------------------------------|-------------------------------|----------------------------|---------------------------|----------------------------|-----------------------------------|---|----------------------------------|-------------------------------------------|-----------------|-----------------------------------------|--------|
| =           | Bill<br>Jim              | ((18)(3)<br>(12)(3)            | ) + (16)<br>) + (18)          | Toda<br>(4) + (<br>(4) + ( | y<br>(12)(5<br>(11)(5     | ō) + (<br>ō) + (           | (14)(1)<br>(12)(1)                | } | esterda                          | ay Dayb                                   | oefore<br><br>  | <br>)                                   |        |
| =           | Bill<br>Jim              | <i>Today</i><br>( 192<br>( 175 | <i>Yester</i><br>192.<br>175. | rd <i>ay</i><br>42<br>29   | <i>Dayb</i><br>192<br>175 | <i>efore</i><br>.20<br>.17 | ····<br>··· )                     |   |                                  |                                           |                 |                                         |        |

# 2.5: Comparing pricing contracts

• We need to buy some supplies

|            | Re     | source Usa | age    | Resource price |         |         |
|------------|--------|------------|--------|----------------|---------|---------|
|            | Prod X | Prod Y     | Prod Z | Store K        | Store L | Store M |
| Res A      | 1      | 1          | 1      | \$1.00         | \$0.75  | \$2.00  |
| Res B      | 5      | 4          | 8      | \$1.25         | \$1.50  | \$1.00  |
| Res C      | 3      | 3          | 3      | \$1.50         | \$1.25  | \$1.75  |
| Res D      | 1      | 1          | 2      | \$2.00         | \$1.25  | \$1.00  |
| Res E      | 2      | 1          | 1      | \$1.00         | \$1.50  | \$2.00  |
| Production | 10     | 40         | 100    |                |         |         |
| Level      |        |            |        |                |         |         |

- So product Z uses 8 units of resource B
- Each store has offered us an exclusive price contract (Store L offers resource A as \$0.75 per unit, but only if we promise not to buy from Store K or Store M)
- We plan on producing 40 units of product Y
- Which store's pricing contract will be cheaper?

## 2.5: Comparing pricing contracts

- Want to convert Products to Store (Price)
- (Product  $\rightarrow$  Resource)  $\times$  (Resource  $\rightarrow$  Store)

|   |        |   |         |          |         |         |       |   |       | Store K | Store L | Store M |
|---|--------|---|---------|----------|---------|---------|-------|---|-------|---------|---------|---------|
|   |        | R | es A    | Res B    | Res C   | Res D   | Res E |   | Res A | \$1.00  | \$0.75  | \$2.00  |
| F | Prod X |   | 1       | 5        | 3       | 1       | 2     | - | Res B | \$1.25  | \$1.50  | \$1.00  |
| F | Prod Y |   | 1       | 4        | 3       | 1       | 1     | ^ | Res C | \$1.50  | \$1.25  | \$1.75  |
| F | Prod Z |   | 1       | 8        | 3       | 2       | 1     |   | Res D | \$2.00  | \$1.25  | \$1.00  |
|   |        |   |         |          |         |         |       |   | Res E | \$1.00  | \$1.50  | \$2.00  |
|   |        |   | Store   | <u>к</u> | Store L | Store M | _     |   |       |         |         |         |
| = | Prod X |   | \$15.75 |          | \$16.25 | \$17.25 |       |   |       |         |         |         |
|   | Prod Y | · | \$13.50 |          | \$13.25 | \$14.25 |       |   |       |         |         |         |
|   | Prod Z | : | \$20.50 |          | \$20.50 | \$19.25 |       |   |       |         |         |         |

- Except each store is cheapest for one of the products!
- need to take into account how much of each product we make

#### 2.5: Comparing pricing contracts

- Want to convert Production Level to Store (Price)
- (Level  $\rightarrow$  Product)  $\times$  (Product  $\rightarrow$  Resource  $\rightarrow$  Store)

|       |        |        |        |     |        | Store K | Store L | Store M |
|-------|--------|--------|--------|-----|--------|---------|---------|---------|
|       | Prod X | Prod Y | Prod Z |     | Prod X | \$15.75 | \$16.25 | \$17.25 |
| Level | 10     | 40     | 100    | - × | Prod Y | \$13.50 | \$13.25 | \$14.25 |
|       |        |        |        |     | Prod Z | \$20.50 | \$20.50 | \$19.25 |

|   |       | Store K   | Store L   | Store M   |  |
|---|-------|-----------|-----------|-----------|--|
| = | Level | \$2747.50 | \$2742.50 | \$2667.50 |  |

• For the projected production levels,

Store M offers the cheaper package

## 2.5: Square matrix, migration

• This table (from the US Census) converts residents from 2011 to 2012

| ( |    | Northeast | Midwest | South  | West   |   |
|---|----|-----------|---------|--------|--------|---|
|   | NE | 98.92%    | 0.09%   | 0.65%  | 0.33%  | - |
|   | MW | 0.08%     | 99.01%  | 0.56%  | 0.35%  |   |
|   | So | 0.16%     | 0.27%   | 99.20% | 0.37%  |   |
|   | We | 0.05%     | 0.28%   | 0.46%  | 99.19% | ) |

- It says that 0.65% of people in the Northeast Census Region moved to the South Census Region
- $\bullet\,$  While population changes occur due to a variety of factors, apparently "internal" migration is 25% to 50% of it, while birth/death is only about 50%
- If we pretend the matrix doesn't change from year to year, we could predict future years too!

### 2.5: Square matrix, migration

- If we multiply this table by itself 10 times,
  - it estimates converting 2011 residents to 2021 residents

| ( |    | Northeast | Midwest | South  | West \   |
|---|----|-----------|---------|--------|----------|
| - | NE | 89.76%    | 0.93%   | 6.05%  | 3.14%    |
|   | MW | 0.77%     | 90.63%  | 5.25%  | 3.32%    |
|   | So | 1.48%     | 2.54%   | 92.46% | 3.50%    |
|   | We | 0.59%     | 2.72%   | 4.36%  | 92.31% / |

|                 |          | NE     | MW     | SO     | WE     |
|-----------------|----------|--------|--------|--------|--------|
|                 | 2012     | 18.01% | 21.77% | 36.91% | 23.31% |
| • Distribution: | 2021     | 17.02% | 21.48% | 37.38% | 24.10% |
|                 | $\infty$ | 9.10%  | 20.63% | 39.55% | 30.72% |

## 2.5: Another example

- (Products  $\rightarrow$  Resource requirements)  $\times$  (Resource  $\rightarrow$  value) = (Products  $\rightarrow$  Value)
- Very useful calculation, but perhaps tricky

|                      | Prod X | Prod Y | Prod Z | Budget |       |       |
|----------------------|--------|--------|--------|--------|-------|-------|
| Res A                | 1      | 1      | 1      | 100    | -     |       |
| Res B                | 5      | 4      | 8      | 500    |       |       |
| Res C                | 3      | 3      | 3      | 1000   |       |       |
| Res D                | 1      | 1      | 2      | 150    |       |       |
| Res E                | 2      | 1      | 1      | 120    |       |       |
| Profit               | 1      | 2      | 3      |        | -     |       |
| Raw resource prices: |        | Res A  | Res B  | Res C  | Res D | Res E |
|                      |        | 0.25   | 0.10   | 0.10   | 0.10  | 0.25  |
|                      |        |        |        |        |       |       |

• What are some problems with "just multiply"?

## 2.5: Another example

- (Products  $\rightarrow$  Resource requirements)  $\times$  (Resource  $\rightarrow$  value) = (Products  $\rightarrow$  Value)
- Very useful calculation, but perhaps tricky

|        | Prod X | Prod Y | Prod Z | Budget |
|--------|--------|--------|--------|--------|
| Res A  | 1      | 1      | 1      | 100    |
| Res B  | 5      | 4      | 8      | 500    |
| Res C  | 3      | 3      | 3      | 1000   |
| Res D  | 1      | 1      | 2      | 150    |
| Res E  | 2      | 1      | 1      | 120    |
| Profit | 1      | 2      | 3      |        |

Raw resource prices:Res ARes BRes CRes DRes E0.250.100.100.100.25

• What are some problems with "just multiply"?

Among others: the tables are "sideways", the sizes and labels don't match

#### 2.5: An answer

• This is closer, now the sizes and labels match:

|                                      | Res A                     | Res B              | Res C               | Res D              | Res F              |     |                                           | Value                                |
|--------------------------------------|---------------------------|--------------------|---------------------|--------------------|--------------------|-----|-------------------------------------------|--------------------------------------|
| Prod X<br>Prod Y<br>Prod Z<br>Budget | 1<br>1<br>1<br>100        | 5<br>4<br>8<br>500 | 3<br>3<br>3<br>1000 | 1<br>1<br>2<br>150 | 2<br>1<br>1<br>120 | - · | Res A<br>Res B<br>Res C<br>Res D<br>Res F | \$0.25<br>\$0.10<br>\$0.10<br>\$0.10 |
| Prod X<br>Prod Y                     | Value<br>\$1.65<br>\$1.30 | _                  |                     |                    |                    |     | Res E                                     | <b>\$</b> 0.25                       |

| Prod Y | \$1.30   |
|--------|----------|
| Prod Z | \$1.80   |
| Budget | \$220.00 |

• What does "value of product X is \$1.65" actually mean?

• What does "value of the budget is \$220.00" actually mean?

#### 2.5: An answer

\$220.00

Budget

• This is closer, now the sizes and labels match:

|        | Rec A  | Rec B  | Rec C | Rec D | Rec F |          |       | Value  |
|--------|--------|--------|-------|-------|-------|----------|-------|--------|
| Duad V | 1      | T(CS D | 2     | 1     | 2     | - '      | Res A | \$0.25 |
| Prod A | 1      | 5      | 5     | 1     | 2     |          | Res B | \$0.10 |
| Prod Y | 1      | 4      | 3     | 1     | 1     | $\times$ | Due C | ¢0.10  |
| Prod Z | 1      | 8      | 3     | 2     | 1     | 1        | Res C | \$0.10 |
| Budget | 100    | 500    | 1000  | 150   | 120   | -        | Res D | \$0.10 |
|        |        |        |       |       |       |          | Res E | \$0.25 |
|        |        |        |       |       |       |          |       |        |
|        | Value  |        |       |       |       |          |       |        |
| Durily | ¢1.65  | _      |       |       |       |          |       |        |
| Prod X | \$1.05 |        |       |       |       |          |       |        |
| Prod Y | \$1.30 |        |       |       |       |          |       |        |
| Prod Z | \$1.80 |        |       |       |       |          |       |        |

• What does "value of product X is \$1.65" actually mean?

It is the total cost of its used resource

• What does "value of the budget is \$220.00" actually mean?

This is the tax liability of the raw resources

#### 4.1: A different answer for the budget

- Is \$220.00 a good price for the resources?
- Remember from last week, if we made 75 product Ys and 25 product Zs, we got \$225.00

| Γ | X   | Y | Ζ   | A  | В    | С   | D   | Ε   | P | ך RHS |
|---|-----|---|-----|----|------|-----|-----|-----|---|-------|
| - | 3/4 | 1 | 0   | 2  | -1/4 | 0   | 0   | 0   | 0 | 75    |
|   | 1/4 | 0 | (1) | -1 | 1/4  | 0   | 0   | 0   | 0 | 25    |
|   | 0   | 0 | 0   | -3 | 0    | (1) | 0   | 0   | 0 | 700   |
|   | 1/4 | 0 | 0   | 0  | -1/4 | 0   | (1) | 0   | 0 | 25    |
|   | 1   | 0 | 0   | -1 | 0    | 0   | 0   | (1) | 0 | 20    |
| Ľ | 5/4 | 0 | 0   | 1  | 1/4  | 0   | 0   | 0   | 1 | 225   |

• We shouldn't sell the needed resources for less than \$225.00!

#### 4.1: Marginal value of our resources

- How much should we pay for just a little more of resource A?
- How much should we charge to sell just a little bit of resource B?
- We look at our profit function:

$$\begin{bmatrix} X & Y & Z & A & B & C & D & E & P & RHS \\ \hline 5/4 & 0 & 0 & 1 & 1/4 & 0 & 0 & 0 & 1 & 225 \end{bmatrix}$$

$$P = \$225.00 - \$1.25X - \$1.00A - \$0.25B$$

- Every A we don't use making Y and Z costs us \$1.00, so we should not sell for anything less than \$1.00 or we will lose money
- Every B we don't use costs us \$0.25 ...

but we can buy them for \$0.10 ...

- 4.1: Buying resources for increased profit
  - We can buy more B at a profit!
  - If we buy 100 more units of B, the revenue goes up \$25 to \$250 but we spent \$10 on the B



• Start with 600 B; P = 250, make 50 Ys and Zs,

use all A and B and D, 700 C leftover, 20 E leftover

• If we buy more than 100 units of B, we waste money: we start to run out of resource D

# 4.1: Marginal, shadow prices

• Look at the bottom line,

those are the prices we can buy/sell resources at

or increase in product price needed before it is profitable to make

- Careful: marginal is for "just a little bit more"
- How much more?
- Until we pivot, so we need to check the pivot ratio!

| Γ | Х   | Y | Ζ | A       | В    | С | D | Е | Р | RHS ] |
|---|-----|---|---|---------|------|---|---|---|---|-------|
|   | 3/4 | 1 | 0 | 2       | -1/4 | 0 | 0 | 0 | 0 | 75    |
|   | 1/4 | 0 | ⊕ | $^{-1}$ | 1/4  | 0 | 0 | 0 | 0 | 25    |
|   | 0   | 0 | 0 | -3      | 0    | ⊕ | 0 | 0 | 0 | 700   |
|   | 1/4 | 0 | 0 | 0       | -1/4 | 0 | ⊕ | 0 | 0 | 25    |
|   | 1   | 0 | 0 | -1      | 0    | 0 | 0 | ⊕ | 0 | 20    |
| _ | 5/4 | 0 | 0 | 1       | 1/4  | 0 | 0 | 0 | 1 | 225   |

B column: smallest non-positive ratio is 25/(-1/4) = 100,
so that is the increase until D pivots