MA162: Finite mathematics

Jack Schmidt

University of Kentucky

March 4, 2013

Schedule:

- HW 2.5-2.6, 3.1-3.3, 4.1 (Late)
- Exam 2, Monday, Mar 04, 2013, from 5pm to 7pm
- HW 5.1 due Friday, Mar 08, 2013
- Spring Break, Mar 09-17, 2013
- HW 5.2-5.3 due Friday, Mar 22, 2013

Today we will cover the practice exam.

PE#1: Arithmetic

• Show your work. Answers without justification receive no credit.

• Add
$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} + \begin{bmatrix} 40 & 50 & 60 \end{bmatrix}$$

• Multiply $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \times \begin{bmatrix} 40 & 50 & 60 \end{bmatrix}$
• Add $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} + \begin{bmatrix} 40 \\ 50 \\ 60 \end{bmatrix}$
• Multiply $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \times \begin{bmatrix} 40 \\ 50 \\ 60 \end{bmatrix}$
• Multiply $\begin{bmatrix} 40 \\ 50 \\ 60 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$
• Find the inverse of $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$.

PE#2: Ch 3 basic skills pt 1

- Show your work. Answers without justification receive no credit.
- Is (x = 3, y = 1) on the correct side of 20x + 40y ≤ 10? Explain why or why not.
- Is (x = 3, y = 1) a feasible solution to

"maximize P = 1.50x + 2.00y subject to $3x + 2y \le 15$, $2x + 3y \le 12$, $x \ge 0$, $y \ge 0$ "?

- Is it optimal? Explain why or why not.
- What are the corners of the feasible region described by 3x + 2y ≤ 15, 2x + 3y ≤ 12, x ≥ 0, y ≥ 0? Make sure to show at least one full calculation.

PE#3: Ch 4 basic skills pt 1

• Show your work. Answers without justification receive no credit.

Refer to this simplex tableau:

1	x	У	z	a	b	с	d	Р	RHS \
	-5	0	3	0	2	1	0	0	33
	4	1	2	0	3	0	0	0	21
	3	0	1	1	4	0	0	0	10
	2	0	0	0	5	0	1	0	44
(1	0	-1	0	-6	0	0	1	55 /

- What is the basic solution indicated by this simplex tableau?
- Explain why it is feasible.
- Explain why it is not optimal.
- Which columns in this simplex tableau are eligible for pivoting?
- What happens if you pivot on a wrong column?
- Assuming we pivot the third column, which rows are eligible for pivoting?
- What happens if you pivot on a wrong row?

- Show your work. Answers without justification receive no credit.
- Do the row ops to pivot on the 3rd column, 3rd row, even if this is not the right row or column.

(x	у	z	a	b	с	d	Р	RHS \
	-5	0	3	0	2	1	0	0	33
	4	1	2	0	3	0	0	0	21
	3	0	1	1	4	0	0	0	10
	2	0	0	0	5	0	1	0	44
[1	0	-1	0	-6	0	0	1	55 /

• Show your work. Answers without justification receive no credit.

Maximize P = 1.50x + 2.00y subject to 5x + y ≤ 40, x + y ≤ 10, x + 5y ≤ 30, x ≥ 0, y ≥ 0 Make sure to (1) shade the region, (2) label the corners, (3) label where the maximum occurs and how big it is, and (4) why it must be the maximum.

PE#6: Ch 3 Full Problem

- Show your work. Answers without justification receive no credit.
- A company makes two products. The products require spending four resources that are limited by a budget. There is a minimum and maximum amount of each product that must and can be produced (some people have already pre-ordered each product, and there is a limited demand). Each product earns a certain amount of revenue.

		Usa	Den				
	Resource 1	Resource 2	Resource 3	Resource 4	Minimum	Maximum	Revenue
Product 1	7	10	3	2	3	40	\$0.50
Product 2	7	5	6	2	9	40	\$1.05
Budget	350	405	255	500			

• Give a recommendation to maximize revenue while using only the limited resources, meeting the minimum demand, and not producing more than the maximum demand

PE#7: Ch 4 Full Problem

- Show your work. Answers without justification receive no credit.
- A company makes 3 products using 5 limited resources. The resource usage and revenue for each product and the budget for each resource are given in the following table.

	Resource 1	Resource 2	Resource 3	Resource 4	Resource 5	Revenue
Product 1	7	10	3	2	8	\$0.75
Product 2	7	5	6	2	5	\$1.05
Product 3	7	8	9	20	6	\$1.50
Budget	350	405	255	500	320	

- How much of each product should the company make to maximize revenue while remaining under budget?
 - You may find the following RREF calculation useful:

7	7	710	0000	350	ſ	10	$^{-1}$	$\frac{2}{7}$ 0	$\frac{-1}{3}$ 0 0 0	15
10	5	801	0000	405		00	8	$\frac{-15}{7}$ 1	$\frac{5}{3}$ 0 0 0	80
3	6	900	1000	255	_	01	2	$\frac{-1}{7}$ 0	$\frac{1}{3}$ 0 0 0	35
2	2	20 0 0	0100	500	~	00	18	$\frac{-2}{7}$ 0	0100	400
8	5	600	0010	320		00	4	$\frac{-11}{7}$ 0	1010	25
-0.75 $-$	1.05 -	1.50 0 0	0001	0		00	$\frac{-3}{20}$	$\frac{9}{140}$ 0	$rac{1}{10}$ 0 0 1	48