MA162: Finite mathematics

Jack Schmidt

University of Kentucky

March 18th, 2013

Schedule:

- HW 1.1-1.4, 2.1-2.6, 3.1-3.3, 4.1, 5.1 (Late)
- HW 5.2-5.3 due Friday, Mar 22, 2013
- HW 6A due Friday, Mar 29, 2013
- HW 6B-6C due Friday, Apr 5, 2013
- Exam 3, Monday, Apr 8, 2013

Today we will cover annuities as sinking funds

Exam 3 breakdown

- Chapter 5, Interest and the Time Value of Money
 - Simple interest
 - Compound interest
 - Sinking funds
 - Amortized loans
- Chapter 6, Counting
 - Inclusion exclusion
 - Inclusion exclusion
 - Multiplication principle
 - Permutations and combinations

5.1: Time value of money

- Interest rate describes how the value of money changes over time
- "1% per month" (aka "12% APR compounded monthly") means:

Now $\xrightarrow{\times 101\%}$ one month from now

• We can travel farther in time:

Now $\xrightarrow{\times 101\%}$ one month from now $\xrightarrow{\times 101\%}$ two months from now Now $\xrightarrow{\times 101\% \times 101\%}$ Two months from now

- To move money forward time one period, multiply by 1 + i
- To move it back, divide by 1 + i

5.2: Annuities

- "Annuity" can refer to a wide variety of financial instruments, often associated with retirement
- For us: it is a steady flow of cash into an interest bearing account "\$100 invested at the end of every month"

"money in the account earns 1% per month" (12% APR compounded monthly)

- Such a cash flow is worth \$1200+\$68.25 at the end of the year
- The \$1200 part is just the 12 payments of \$100
- How do we figure out the "+\$68.25" part?

5.2: Work on the front of the worksheet

- Answer question #1 (a-e) on the worksheet
- There is an interest bearing account
- Nominal interest rate of 12% APR, compounded monthly
 - So actual interest rate is 1% per month, compounded monthly
- Several \$100 bills were deposited
- How much they are worth depends on how long they've been there

5.2: Sum method for annuity

- \$100 is worth $(1.01)^n$ if it has been there *n* months
 - (a) $100(1.01)^0 = 100$
 - (b) $100(1.01)^1 = 101$
 - (c) $100(1.01)^2 = 102.01$
 - (d) is just 100 + 101 + 102.01 = 303.01
- So twelve \$100s (one for eleven, one for ten, ..., one for one, one just now) is $$100(1.01)^{11} + $100(1.01)^{10} + \dots + $100(1.01)^1 + $100(1.01)^0$
- Only new part from eleven \$100s is the \$100(1.01)¹¹ = \$111.57
 (e) Total is \$1156.68 + \$111.57 = \$1268.25

5.2: Spreadsheet method for annuity

• Four columns: Old balance, Interest, Payment, New Balance

Date	Old	Int	Pay	New
Jan	\$0.00	\$0.00	\$100.00	\$100.00
Feb	\$100.00	\$1.00	\$100.00	\$201.00
Mar	\$201.00	\$2.01	\$100.00	\$303.01
Apr	\$303.01	\$3.03	\$100.00	\$406.04
May	\$406.04	\$4.06	\$100.00	\$510.10
Jun	\$510.10	\$5.10	\$100.00	\$615.20
Jul	\$615.20	\$6.15	\$100.00	\$721.35
Aug	\$721.35	\$7.21	\$100.00	\$828.56
Sep	\$828.56	\$8.29	\$100.00	\$936.85
Oct	\$936.85	\$9.37	\$100.00	\$1046.22
Nov	\$1046.22	\$10.46	\$100.00	\$1156.68
Dec	\$1156.68	\$11.57	\$100.00	\$1268.25

	A	В	С	D
1	0	=A1*0.01	100	=A1+B1+C1
2	=D1	=A2*0.01	100	=A2+B2+C2
3	=D2	=A3*0.01	100	=A3+B3+C3

5.2: Formula method

$$A = R((1+i)^n - 1)/i$$

- where the Recurring payment is how much is deposited at the end of each period, like \$100
- the interest rate per period, like 12%/12 = 0.01

(nominal interest rate of 12% APR compounded monthly)

- the number of periods, like 12 months (one year)
- the accumulated amount, like

$$egin{aligned} &A = \$100((1+0.01)^{12}-1)/(0.01) = \$1268.25 \ &A = 100 \star ((1+0.01) \wedge 12 - 1)/(0.01) = 1268.250301 \end{aligned}$$

10

5.2: Examples of formula

$$A = R((1+i)^n - 1)/i$$

- After two years of investing \$100 at the end of every month at a nominal interest rate of 12% APR compounded monthly:
 - R = \$100
 - i = 12%/12
 - = 0.01
 - n = 24 months

$$A = \$100((1 + 12\%/12)^{24} - 1)/(12\%/12) \approx \$2697.35$$

- After three years of investing \$100 at the end of every month at a nominal interest rate of 12% APR compounded monthly:
 - R = \$100
 - i = 0.01
 - n = 36 months

$$A = \$100((1 + 12\%/12)^{36} - 1)/(12\%/12) \approx \$4307.69$$

5.2: Now finish the worksheet

2. Continue the previous two examples, but to 5 years

3. Need to invest more if you want \$10,000 in only 3 years

4. How long to get \$50,000 at the original rate?

5.2: Now finish the worksheet

2. Continue the previous two examples, but to 5 years

 $100((1+0.12/12)^{(5\cdot12)}-1)/(0.12/12) = 8166.97$

3. Need to invest more if you want \$10,000 in only 3 years

$$10000/(((1+0.12/12)^{3\cdot 12}-1)/(0.12/12)) = 232.14$$

4. How long to get \$50,000 at the original rate?

 $\log(\$50000/\$100 \cdot (0.12/12) + 1)/\log(1 + 0.12/12) = 180.07$ months, 15.00 years

- Total payment is a popular measure of a financial instrument
- The total payment of \$100 per month for one year is \$1200
- It is literally the total of the payments in
- It mixes the just now \$100 with the one month ago \$100 with the eleven months ago \$1200
- It is nearly useless for valuing cash flows, but consumers like it psychologically

5.2: Total payment versus time value of money

- The following cash flows have the same total payment of \$1200
- Pay \$1200 now
- Pay \$1200 in twelve months
- Pay \$100 at the end of the next twelve months
- Which is the cheapest option, taking into account the time value of money?

5.2: Total payment versus time value of money

- The following cash flows have the same total payment of \$1200
- Pay \$1200 now
- Pay \$1200 in twelve months
- Pay \$100 at the end of the next twelve months
- Which is the cheapest option, taking into account the time value of money?
- \$1200 in twelve months is cheapest

5.2: Summary

- Today we learned about annuities, present value, future value, and total payout
 - Future value of annuity, paying out *n* times at per-period interest rate *i*

$$A = R \frac{(1+i)^n - 1}{i}$$

- Present value of annuity is just future value divided by $(1 + i)^n$
- Total payout is just nR, n payments of R each
- You are now ready to complete HW 5.2 and should have already completed HW 5.1
- Make sure to take advantage of office hours: today 4pm-5pm in Mathskeller (CB63, basement of White Hall Classroom Building)