Chapter 3: Limits

What do you get for $\frac{x-1}{\sqrt{x}-1}$ when $x=1$?

What about when x is close to 1 ?

We call this a limit: a single number L so that when x is close to $1, y$ is close to L.

Here is part of the graph of $\frac{x-1}{\sqrt{x}-1}$.
The grapher got mad when I asked it about $x=1$.

Chapter 3: Bonus

What happens when x is nearly 1 in $\frac{(x-1)^{1}}{\sqrt{x}-1-(x-1) / 2}$?

What happens when x is nearly 1 in $\frac{(x-1)^{2}}{\sqrt{x}-1-(x-1) / 2}$?

What happens when x is nearly 1 in $\frac{(x-1)^{3}}{\sqrt{x}-1-(x-1) / 2}$?

Plots:

