1.7.1 In each matrix decide if the columns are linearly independent. If they are not, cross out the **minimum** number of columns to make them linearly independent.

	${f um}$ number of columns	s to make them linearl	ly independent.	1
$\begin{bmatrix} 1 & 2 \\ 4 & 5 \\ 6 & 7 \end{bmatrix}$	$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 9 \\ 6 & 7 & 13 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 2 \\ 0 & 3 & 4 \\ 0 & 5 & 6 \end{bmatrix}$	$\begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 0 \end{bmatrix}$
Ind	2 3		Ind	,
	4 + 5 = 9 6 7 13			v = C.
	X3 is free	X is free		X_2 is free $X_1 = ? - X$
•	$X_1 = ? -X_3$ $X_2 = ? -X_3$			

1.8.1 Write down a matrix that sends
$$\vec{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 to $\vec{b} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, but also sends $\vec{x} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ to $\vec{b} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ and $\vec{x} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ to $\vec{b} = \begin{bmatrix} 6 \\ 7 \end{bmatrix}$.

$$\begin{array}{c}
\chi_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \chi_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \chi_3 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \quad \text{So} \quad \alpha_1 = 2 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \quad \text{So} \quad \alpha_2 = 3 \\ \alpha_2 = 3 \\ \alpha_3 = 4 \\ \alpha_4 = 5 \\ \alpha_5 = 4 \\ \alpha_5 = 4 \\ \alpha_6 = 7 \\ \alpha_6 = 7$$

Usually we thought of \vec{b} as given, and tried to solve for \vec{x} . We've started to let \vec{b} vary, and asked if we can even find a \vec{x} . That led us to just try an \vec{x} , to see which \vec{b} we got. In other words, we can view a matrix like A as a function that takes \vec{x} and gives us $\vec{b} = A\vec{x}$ as the answer.

This function $A(\vec{x}) = A\vec{x}$ is better than the ordinary function. It is linear. $A(\vec{x} + \vec{y}) =$ $A(\vec{x}) + A(\vec{y})$ and $A(c\vec{x}) = cA(\vec{x})$.

Consider
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
. What does it do to a vector $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$?

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} X_1 & 0 \\ 1 \end{bmatrix} + \begin{bmatrix} X_1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} X_1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} X_1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} X_1 & 0 \\ X_2 & 1 \end{bmatrix}$$

Does
$$A(\vec{x}) = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$$
 have a solution?

$$A(\vec{x}) = \begin{bmatrix} x_1 \\ x_2 \\ x_1 + x_2 \end{bmatrix} \quad \text{so solve} \quad \begin{bmatrix} x_1 \\ x_2 \\ x_1 + x_1 \end{bmatrix} = \begin{bmatrix} \frac{3}{4} \\ 5 \end{bmatrix}$$

$$X_1 = 3, \ X_2 = 4, \quad \text{but} \quad x_1 + x_2 = 7 + 5$$

$$N_0 \quad \text{solution}.$$

Takeaway: $\vec{x} \stackrel{A}{\rightarrow} \vec{b}$

Weird question: If \vec{x} is small, is \vec{b} small?

$$\vec{x}$$
 is small, is \vec{b} small? There is a number $\|A\|_2$ the spanning of that \vec{d} \vec{X} is small $Ax = b$ is no the more than $\|A\|_2$ times as big an \vec{X} .