1.8: Linear transformations

MA322-001 Feb 7 Worksheet

Usually we thought of \vec{b} as given, and tried to solve for \vec{x} . We've started to let \vec{b} vary, and asked if we can even find a \vec{x} . That led us to just try an \vec{x} , to see which \vec{b} we got. In other words, we can view a matrix like A as a function that that takes \vec{x} and gives us $\vec{b} = A\vec{x}$ as the answer.

This function $A(\vec{x}) = A\vec{x}$ is better than the ordinary function. It is **linear**. $A(\vec{x} + \vec{y}) = A(\vec{x}) + A(\vec{y})$ and $A(c\vec{x}) = cA(\vec{x})$.

Consider $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$. What does it do to a vector $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$?

Does
$$A(\vec{x}) = \begin{bmatrix} 3\\ 4\\ 5 \end{bmatrix}$$
 have a solution?

Takeaway: $\vec{x} \xrightarrow{A} \vec{b}$

Weird question: If \vec{x} is small, is \vec{b} small?

MA322-001 Feb $7~{\rm Quiz}$

Name:

1.7.1 In each matrix decide if the columns are linearly independent. If they are not, cross out the **minimum** number of columns to make them linearly independent.

[1	2]	$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 2 \end{bmatrix}$	$\begin{bmatrix} 1 & 2 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 \end{bmatrix}$
4	5	4 5 9	$\begin{bmatrix} 0 & 3 & 4 \end{bmatrix}$	1 1	1 1
6	7	$\begin{bmatrix} 6 & 7 & 13 \end{bmatrix}$	$\begin{bmatrix} 0 & 5 & 6 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0 0

1.8.1 Write down a matrix that sends $\vec{x} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$ to $\vec{b} = \begin{bmatrix} 2\\3 \end{bmatrix}$, but also sends $\vec{x} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$ to $\vec{b} = \begin{bmatrix} 4\\5 \end{bmatrix}$ and $\vec{x} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$ to $\vec{b} = \begin{bmatrix} 6\\7 \end{bmatrix}$.