MA322-001 Mar 10 Review

1. Definition of vector space, subspace, and linear transformation.

(a) Set $V = \{p(t) : p \text{ is a quadratic polynomial}\}$. So $t^2 + 3t + 7$ and $-8t^2 + 5$ are in V, but t - 3 and sin(t) are not in V. Is V a vector space?

(b) Set
$$U = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : 2x + 3y = 5 \right\}$$
. So $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} -2 \\ 3 \end{bmatrix}$ are in U , but $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 4 \end{bmatrix}$ are not in U . Is U a subspace of \mathbb{R}^2 ?

(c) Set
$$W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : xy = 0 \right\}$$
. So $\begin{bmatrix} -3 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ \sqrt{2} \end{bmatrix}$ are in W , but $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} -3 \\ \sqrt{2} \end{bmatrix}$ are not in W . Is W a subspace of \mathbb{R}^2 ?

Notation: $\mathbb{R}^2 = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x, y \text{ are any numbers} \right\}$ is the vector space containing all column vectors of length 2. Many people think of it as the Euclidean plane.

- 2. Linear transformations (Make sure to justify your answers.)
- (a) What are the two main requirements for a function to be a linear transformation?

(b) Set $T : \mathbb{R}^2 \to \mathbb{R}$ to be the function with $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = 2x + 3y$. So $T\left(\begin{bmatrix} \sqrt{2} \\ 7 \end{bmatrix}\right) = 2\sqrt{2} + 3(7) = 2\sqrt{2} + 21$. Is T a linear transformation?

(c) Set $S : \mathbb{R}^2 \to \mathbb{R}$ to be the function with $S\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = xy$. So $S\left(\begin{bmatrix} \sqrt{2} \\ 7 \end{bmatrix}\right) = \sqrt{2}(7) = 7\sqrt{2}$. Is S a linear transformation?

3. Null spaces (Make sure to justify your answers.)

(a) Set
$$A = \begin{bmatrix} 1 & -1 & -1 \\ 2 & -6 & 0 \end{bmatrix}$$
 and $\vec{\mathbf{x}} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$. Is $\vec{\mathbf{x}}$ in the null space of A ?

(b) List 5 vectors from the null space of (that same) A.

(c) Give a basis for the null space of (that same) A.

(d) What is the dimension of the null space of (that same) A?

(e) Give an example of a different matrix B that has the same null space as (that same) A.

4. Column spaces (Make sure to justify your answers.)

(a) Set
$$A = \begin{bmatrix} 1 & -1 & -1 \\ 2 & -6 & 0 \\ 1 & -3 & 0 \end{bmatrix}$$
 and $\vec{\mathbf{b}} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$. Is $\vec{\mathbf{b}}$ in the column space of A ?

(b) List 5 vectors from the column space of (that same) A.

(c) Give a basis for the column space of (that same) A.

(d) What is the dimension of the column space of (that same) A?

(e) Give an example of another matrix C that has the same column space as (that same) A.

I'll probably have A be the same matrix on pages 3 and 4, but the A from class (the one page 3) is not a good exam question on page 4.