MA322-001 Apr 9 Cliff Notes - Projections

The projection of a vector \vec{v} onto a vector \vec{w} is the multiple of \vec{w} that is nearest to \vec{v} .

Calculus interlude: The multiples of \vec{w} are $t\vec{w}$, so which value of t is best? Let $f(t) = \|\vec{v} - t\vec{w}\|$. Then

$$f(t)^{2} = \langle \vec{v} - t\vec{w}, \vec{v} - t\vec{w} \rangle = \langle \vec{v}, \vec{v} \rangle - 2\langle \vec{v}, \vec{w} \rangle t + \langle \vec{w}, \vec{w} \rangle t^{2}$$

is quadratic, so its minimum (and the minimum of f(t)) occurs at " $-\frac{b}{2a}$ ", that is at $t = \frac{\vec{v} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}$. The formula for the projection of \vec{v} onto \vec{w} is thus

$$\mathrm{proj}_{\vec{w}}(\vec{v}) = \frac{\vec{v} \cdot \vec{w}}{\vec{w} \cdot \vec{w}} \vec{w}$$

Example: Define
$$\vec{g}_1 = \begin{bmatrix} 4/9 \\ 4/9 \\ 7/9 \end{bmatrix}$$
, $\vec{g}_2 = \begin{bmatrix} 1/9 \\ -8/9 \\ 4/9 \end{bmatrix}$, $\vec{g}_3 = \begin{bmatrix} 8/9 \\ -1/9 \\ -4/9 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 1 \\ 6 \\ 5 \end{bmatrix}$.

By the way, $\vec{g}_i \cdot \vec{g}_j = 0$ if $i \neq j$ and $\vec{g}_i \cdot \vec{g}_i = 1$.

Find the projection of \vec{v} onto \vec{g}_1 : $\vec{g}_1 \cdot \vec{g}_1 = ?$ $\vec{v} \cdot \vec{g}_1 = ?$ $\vec{q} \cdot \vec{g}_1 = ?$

Find the projection of \vec{v} onto \vec{g}_3 : $\vec{g}_3 \cdot \vec{g}_3 = ? \qquad -2\vec{g}_3 = \frac{1}{9} \begin{bmatrix} -16 \\ 2 \\ 8 \end{bmatrix}$

What happens when you add them up? $= \frac{1}{9} \begin{bmatrix} 28 - 3 - 16 \\ 28 + 24 + 2 \\ 49 - 12 + 8 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 9 \\ 54 \\ 46 \end{bmatrix} = \vec{V}$

Find x_1 , x_2 , and x_3 such that $\vec{v} = x_1 \vec{g}_1 + x_2 \vec{g}_2 + x_3 \vec{g}_3$. $7 \vec{g}_1 - 3 \vec{g}_2 - 2 \vec{g}_3$

 $X_1 = 7$, $X_2 = -3$, $X_3 = -2$

How does this magic work? Well, define the matrix $G = \begin{bmatrix} \vec{g_1} & \vec{g_2} & \vec{g_3} \end{bmatrix} = \begin{bmatrix} 4/9 & 1/9 & 8/9 \\ 4/9 & -8/9 & -1/9 \\ 7/9 & 4/9 & -4/9 \end{bmatrix}$.

How is G^TG related to $\langle \vec{g}_i, \vec{g}_j \rangle$?

this is the (Lij) the entry of G^TG .

So $G^TG = I$

So that means $G^{-1} = G^T$. Hence multiplying by G^T solves systems of equations, like $G\vec{x} = \vec{v}$.

MA322-001 Apr 9 Quiz

Let $\vec{g}_1 = \begin{bmatrix} 3/5 \\ 4/5 \end{bmatrix}$, $\vec{g}_2 = \begin{bmatrix} -4/5 \\ 3/5 \end{bmatrix}$, and $\vec{v} = \begin{bmatrix} 7 \\ 11 \end{bmatrix}$.

1. Compute the following:
(a)
$$\langle \vec{g}_1, \vec{g}_1 \rangle$$
 (3/5) (3/5) + (4/5) (4/5) = $\frac{q}{25} + \frac{1b}{25} = \frac{25}{25} = 1$

(b)
$$\langle \vec{v}, \vec{g}_1 \rangle$$
 (7) (3/5) + (11) (4/5) = $\frac{21}{5} + \frac{44}{5} = \frac{65}{5} = 13$

(c) The projection
$$\vec{u}$$
 of \vec{v} onto \vec{g}_1 : $\vec{\mathcal{U}} = \frac{\vec{V} \cdot \vec{g}_1}{\vec{g}_1 \cdot \vec{g}_1} = \frac{13}{1} \cdot \vec{g}_1 = \begin{bmatrix} 39/5 \\ 5a/5 \end{bmatrix}$

(d)
$$\langle \vec{u}, \vec{g}_2 \rangle$$
 $\left(\frac{39}{5} \right) \left(\frac{-4}{5} \right) + \left(\frac{52}{5} \right) \left(\frac{3}{5} \right) = \frac{-156}{25} + \frac{156}{25} = 0$

2. Compute the following:
(a)
$$\langle \vec{g}_2, \vec{g}_2 \rangle$$
 $\left(-\frac{4}{5} \right) \left(-\frac{4}{5} \right) + \left(\frac{3}{5} \right) \left(\frac{3}{5} \right) = \frac{16}{25} + \frac{9}{25} = \frac{25}{25} = 1$

(b)
$$\langle \vec{v}, \vec{g}_2 \rangle$$
 (7) (-4/5) + (11) (3/5) = $-\frac{28}{5}$ + $\frac{33}{5}$ = $\frac{5}{5}$ =]

(c) The projection
$$\vec{w}$$
 of \vec{v} onto \vec{g}_2 : $\vec{\omega} = \frac{\vec{\nabla} \cdot \vec{g}_2}{\vec{g}_2 \cdot \vec{g}_2} \vec{g}_2 = \frac{1}{3} \vec{g}_2 = \begin{bmatrix} -4/5 \\ 3/5 \end{bmatrix}$

(d)
$$(\vec{w}, \vec{g})$$
 $(\vec{\omega}, \vec{g})$ $(\vec{\omega}, \vec{g})$

3. What is
$$\vec{u} + \vec{w}$$
? $\begin{bmatrix} 39/5 \\ 52/5 \end{bmatrix} + \begin{bmatrix} -4/5 \\ 3/5 \end{bmatrix} = \begin{bmatrix} 35/5 \\ 55/5 \end{bmatrix} = \begin{bmatrix} 7 \\ 11 \end{bmatrix} = \vec{V}$

4. Find numbers
$$x_1$$
 and x_2 so that $\vec{v} = x_1 \vec{g}_1 + x_2 \vec{g}_2$.
 $\vec{v} = \vec{U} + \vec{W}$

$$\vec{\nabla} = |\vec{3} \vec{g}_1 + \vec{1} \vec{g}_2$$

$$\chi_1 = |\vec{3}|_1 + |\vec{3}|_2 + |\vec{$$