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Today’s topic: A quadratic form takes X to (%, AX) = X-AX. Compare this to a linear
transformation that takes X to AX. Informally, linear transformations tell you coordinates,
while quadratic forms tell you energy.

Important example: The sample mean M, and the sample variance V,, are important
statistics defined on a series of observations X. The sample mean is linear:

T
M, = %Z:f:1 (the average)

i=1

The sample variance is a quadratic form:

n

Vn = 'n.lTl (-’Ez - Mn)2
=1
For n =2, we get

Valz,y) =1 ((w — (@ +4)/2)° + (y — (2 +9)/2)°) = 32" — 2y + 3¢’
This is the same as '

" L 2 -1/2
Vo =X-AX forx=[§} andA={_};2 1?2}

Is there a simpler formula for V4?7 Ves, there is and we’ll use chapter 5-7 to find it! The

formula 322 — zy + 33* is ugly because “x” and “y” are the wrong variables. We need to
choose better variables; we need to choose eigenvectors.

Find the eigenpairs of A I'll call them {cp, Vo) and (c1, ¥1).
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Every X = (z,y) can be written as the sum of two vectors: _J.Tvo added to 3’ 1__’.‘ V1. Simplify

those two vectors using your values for ¥;.
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That means that = (a¥f + 1) {aco¥o -+ berVi)
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Main Idea of 7.2: The principal axes of a quadratic form are the eigenvectors of its
associated symmetric matrix. If X- AX is the quadratic form, {¢;, ¥;} are its eigenpairs, then
the spectral decomposition of A is
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Important example: Let’s examine sample variance for n samples, instead of just 2.
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where I is the identity matrix and J is the matrix of all ones {a very famous matrix).

We can find an orthogonal basis of eigenvectors using chapter 5: The first eigenpair is
(c1, %) = (0,3) where fis the vector of all ones. The other eigenvalues are all ?ﬁ“fv S0 we
have to be a little clever to find orthogonal eigenvectors. I'll use the output of Gram-Schmidt
when applied to the consuecutive difference eigenvectors €;_; — €;. We get the ith eigenpalir
is (c;, Vi) where ¢; = =& and ¥; = STiTh(e; — ;) is the vector that is ail ones up to the

=1
(i — 1)st coordinate, is 1 — 4 as the ith coordinate, and zero afterwards. _~ —7_ i‘ V1 _Ho 00“”}
Here are the relevant dot products (here i =2,3,...,n): \{5 '
RV, = T1+2o+...+12, ' = nM,
V-V = 124124+, +17 = n -
X-V; = mtae+... +xo—(E— Dy = (i — 1M1 —x;)
G009 = 12412+ 4124+ 0-12=(G-1)+(E-1)2% = i(i—1)

Using the principal axes of A we get

e T

=5<'-A5€=Z_,ci_, XV
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Notice that
Vn+1 = (1 - 1/?1)Vn + (Mn - :Itn+1)2/(?’b + 1)

This gives a simple, numerically stable, memory-less algorithm, published as Welford (1962),
to update a running variance:

function [ new_count, new_ave, new_var] =
new_count = 1
ney_ave = new_obs
new_var = 0

function [ new_count, new_ave, new_var] = update( old_count, old_ave, old_var, new_obs

init{ new_obs )

new_count = old_count + 1;
new_ave = old_ave + (new.obs - old_ave)/new_count
new_var = old_varx(l-1/old_count) + ( old.ave - new_obs )"2/(new_count);

This demonstrates how eigenvectors can be unexpectedly useful (especially in real time
computing such as aircraft control).
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7.1: Let A be the diagonal matrix A = { 0 3 0 “ .
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{a) Compute the eigenpairs (c;, ¥;) of
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(b) Compute the rank one matrices 5% V¥
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7.2: Find a matrix B so that if X = { Z } then % - BR = 7% + ldzy + 5y°.
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