Today’s topic: A quadratic form takes X to (X, AX) = X- AX. Compare this to a linear
transformation that takes X to AX. Informally, linear transformations tell you coordinates,
while quadratic forms tell you energy.

Important example: The sample mean M, and the sample variance V,, are important
statistics defined on a series of observations X. The sample mean is linear:

M, = %Z x; (the average)
i=1

The sample variance is a quadratic form:

n

Vn - ﬁ Z(xz - Mn)2

i=1
For n = 2, we get

Valz,y) =1 (2 = (x4 9)/2)* + (y — (2 +9)/2)*) = §2° — a2y + 3°
This is the same as

S 4o 5 1/2 —1/2
Vo=x-AX forx:[:;} andA:[_1§2 142]

Is there a simpler formula for V57 Yes, there is and we’ll use chapter 5-7 to find it! The

formula %xQ —xy + %yQ is ugly because “x” and “y” are the wrong variables. We need to
choose better variables; we need to choose eigenvectors.

Find the eigenpairs of A. T'll call them (cg, Vo) and (cq, V).

Every X = (,y) can be written as the sum of two vectors: “2X+; added to

V1% = . .
| L T 12v1. Simplify
those two vectors using your values for v;.

v

Vo = XTAX

(avl + VT (A(avy + bvy))
That means that (aVE + b)) (acoVo + bey vy)
Simplify this using your values for a, b, ¢;, and V;. = d’c||Vo||* + bPer || Va2



Main Idea of 7.2: The principal axes of a quadratic form are the eigenvectors of its
associated symmetric matrix. If X - AX is the quadratic form, (¢;, V;) are its eigenpairs, then
the spectral decomposition of A is

n n
A:Z Zvivivi and X-AX:Z (X V)

Vi - V. - V.
=1 ? i=1 (3 I3

Important example: Let’s examine sample variance for n samples, instead of just 2.

Ty

o)
V,=X-AX for X = i and A = —1

1 71
n—1 n(n—1)

J

Ty,
where I is the identity matrix and J is the matrix of all ones (a very famous matrix).

We can find an orthogonal basis of eigenvectors using chapter 5: The first eigenpair is

c1,vy) = (0, i) where j is the vector of all ones. The other eigenvalues are all —L_ 5o we
J J g n—1

have to be a little clever to find orthogonal eigenvectors. I'll use the output of Gram-Schmidt
when applied to the consuecutive difference eigenvectors €;_; — €;. We get the ith eigenpair
is (¢;,V;) where ¢; = —= and V; = Z;;ll(ej — e;) is the vector that is all ones up to the
(1 — 1)st coordinate, is 1 — i as the ith coordinate, and zero afterwards.

Here are the relevant dot products (here i = 2,3,...,n):
i-\71 = 1 +To+ ...+ 2Ty = nMn
Vi vp = 124124417 =n
Viev, = P+12+.  +P2+0-1)2?=0G0—-1)+0GE—-1)?* = i(i—1)

Using the principal axes of A we get

n n

Notice that
Vipr = (1= 1/n)V, + (M, — 2p11)*/(n + 1)

This gives a simple, numerically stable, memory-less algorithm, published as Welford (1962),
to update a running variance:

function [ new_count, new_ave, new_var] = init( new_obs )
new_count = 1
new_ave = new_obs
new_var = 0
function [ new_count, new_ave, new_var] = update( old_count, old_ave, old_var, new_obs )
new_count = old_count + 1;
new_ave = old_ave + (new_obs - old_ave)/new_count
new_var = old_var*(1-1/o0ld_count) + ( old_ave - new_obs )~2/(new_count);

This demonstrates how eigenvectors can be unexpectedly useful (especially in real time
computing such as aircraft control).
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7.1: Let A be the diagonal matrix A= [ 0 3 0
0 0 5
(a) Compute the eigenpairs (¢;, ;) of A:
(b) Compute the rank one matrices 2=V, v}

(c¢) Add them up to get the spectral decomposition of A:

7.2: Find a matrix B so that if X = [ Z } then X - BX = 2% + 14xy + 5y

(b) Actually multiply out BX

(¢) Actually multiply out X - BX



