
Today’s topic: A quadratic form takes x⃗ to ⟨x⃗, Ax⃗⟩ = x⃗·Ax⃗. Compare this to a linear
transformation that takes x⃗ to Ax⃗. Informally, linear transformations tell you coordinates,
while quadratic forms tell you energy.

Important example: The sample mean Mn and the sample variance Vn are important
statistics defined on a series of observations x⃗. The sample mean is linear:

Mn = 1
n

n∑
i=1

xi (the average)

The sample variance is a quadratic form:

Vn = 1
n−1

n∑
i=1

(xi −Mn)
2

For n = 2, we get

V2(x, y) =
1
1

(
(x− (x+ y)/2)2 + (y − (x+ y)/2)2

)
= 1

2
x2 − xy + 1

2
y2

This is the same as

V2 = x⃗ · Ax⃗ for x⃗ =

[
x
y

]
and A =

[
1/2 −1/2

−1/2 1/2

]
Is there a simpler formula for V2? Yes, there is and we’ll use chapter 5-7 to find it! The
formula 1

2
x2 − xy + 1

2
y2 is ugly because “x” and “y” are the wrong variables. We need to

choose better variables; we need to choose eigenvectors.

Find the eigenpairs of A. I’ll call them (c0, v⃗0) and (c1, v⃗1).

Every x⃗ = (x, y) can be written as the sum of two vectors: v⃗0·x⃗
v⃗0·v⃗0

v⃗0 added to v⃗1·x⃗
v⃗1·v⃗1

v⃗1. Simplify
those two vectors using your values for v⃗i.

That means that
V2 = x⃗TAx⃗ = (av⃗T

0 + bv⃗T
1 ) (A(av⃗0 + bv⃗1))

= (av⃗T
0 + bv⃗T

1 )(ac0v⃗0 + bc1v⃗1)
= a2c0∥v⃗0∥2 + b2c1∥v⃗1∥2.Simplify this using your values for a, b, ci, and v⃗i.



Main Idea of 7.2: The principal axes of a quadratic form are the eigenvectors of its
associated symmetric matrix. If x⃗ ·Ax⃗ is the quadratic form, (ci, v⃗i) are its eigenpairs, then
the spectral decomposition of A is

A =
n∑

i=1

ci
v⃗i · v⃗i

v⃗iv⃗
T
i and x⃗ · Ax⃗ =

n∑
i=1

ci
v⃗i · v⃗i

(x⃗ · v⃗i)
2

Important example: Let’s examine sample variance for n samples, instead of just 2.

Vn = x⃗ · Ax⃗ for x⃗ =


x1

x2
...

xn

 and A = 1
n−1

I − 1
n(n−1)

J

where I is the identity matrix and J is the matrix of all ones (a very famous matrix).

We can find an orthogonal basis of eigenvectors using chapter 5: The first eigenpair is

(c1, v⃗1) = (0, j⃗) where j⃗ is the vector of all ones. The other eigenvalues are all 1
n−1

, so we
have to be a little clever to find orthogonal eigenvectors. I’ll use the output of Gram-Schmidt
when applied to the consuecutive difference eigenvectors e⃗i−1 − e⃗i. We get the ith eigenpair
is (ci, v⃗i) where ci =

1
n−1

and v⃗i =
∑i−1

j=1(ej − ei) is the vector that is all ones up to the

(i− 1)st coordinate, is 1− i as the ith coordinate, and zero afterwards.

Here are the relevant dot products (here i = 2, 3, . . . , n):

x⃗ · v⃗1 = x1 + x2 + . . .+ xn = nMn

v⃗1 · v⃗1 = 12 + 12 + . . .+ 12 = n
x⃗ · v⃗i = x1 + x2 + . . .+ xi−1 − (i− 1)xi = (i− 1)(Mi−1 − xi)
v⃗i · v⃗i = 12 + 12 + . . .+ 12 + (i− 1)2 = (i− 1) + (i− 1)2 = i(i− 1)

Using the principal axes of A we get

Vn = x⃗ · Ax⃗ =
n∑

i=1

ci
v⃗i · v⃗i

(x⃗ · v⃗i)
2 = 1

n−1

n∑
i=2

(Mi−1 − xi)
2(1− 1/i)

Notice that
Vn+1 = (1− 1/n)Vn + (Mn − xn+1)

2/(n+ 1)

This gives a simple, numerically stable, memory-less algorithm, published as Welford (1962),
to update a running variance:

function [ new_count, new_ave, new_var] = init( new_obs )

new_count = 1

new_ave = new_obs

new_var = 0

function [ new_count, new_ave, new_var] = update( old_count, old_ave, old_var, new_obs )

new_count = old_count + 1;

new_ave = old_ave + (new_obs - old_ave)/new_count

new_var = old_var*(1-1/old_count) + ( old_ave - new_obs )^2/(new_count);

This demonstrates how eigenvectors can be unexpectedly useful (especially in real time
computing such as aircraft control).
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7.1: Let A be the diagonal matrix A =

 1 0 0
0 3 0
0 0 5

.
(a) Compute the eigenpairs (ci, v⃗i) of A:

(b) Compute the rank one matrices ci
v⃗i·v⃗i

v⃗iv⃗
T
i

(c) Add them up to get the spectral decomposition of A:

7.2: Find a matrix B so that if x⃗ =

[
x
y

]
then x⃗ ·Bx⃗ = x2 + 14xy + 5y2.

(b) Actually multiply out Bx⃗

(c) Actually multiply out x⃗ ·Bx⃗


