Today's topic: SVD - spectral decomposition for rectangular matrices

Chapter 6 showed us that orthogonal vectors turned all that row reduction into projection (dot products). Chapter 7.1-7.3 used this combined with chapter 5 to handle square symmetric matrices very nicely. Now we handle rectangular matrices (this course does not cover square non-symmetric matrices, like Markov matrices, sorry).

Main idea: For every matrix A there are two sets of orthogonal vectors $\{\vec{\mathbf{u}}_i\}$ and $\{\vec{\mathbf{v}}_i\}$ so that

$$A = \sum_{i=1}^{r} \vec{\mathbf{u}}_i \vec{\mathbf{v}}_i^T$$

Multiplication: To compute $A\vec{\mathbf{x}}$ we use dot-products: compute $\vec{\mathbf{x}} \cdot \vec{\mathbf{v}}_i$ and use that as the $\vec{\mathbf{u}}_i$ coordinate:

$$A\vec{\mathbf{x}} = \left(\sum_{i=1}^{r} \vec{\mathbf{u}}_{i} \vec{\mathbf{v}}_{i}^{T}\right) \vec{\mathbf{x}} = \sum_{i=1}^{r} \vec{\mathbf{u}}_{i} \left(\vec{\mathbf{v}}_{i}^{T} \vec{\mathbf{x}}\right) = \sum_{i=1}^{r} (\vec{\mathbf{x}} \cdot \vec{\mathbf{v}}_{i}) \vec{\mathbf{u}}_{i}$$

Lengths: Since everything is orthogonal, lengths are very easy to compute:

$$\|\vec{\mathbf{x}}\|^{2} = \sum_{i=0}^{n} \frac{(\vec{\mathbf{x}} \cdot \vec{\mathbf{v}}_{a})^{2}}{\vec{\mathbf{v}}_{i} \cdot \vec{\mathbf{v}}_{i}} \qquad \|A\vec{\mathbf{x}}\|^{2} = \sum_{i=0}^{r} (\vec{\mathbf{x}} \cdot \vec{\mathbf{v}}_{i})^{2} \|u_{i}\|^{2}$$

If we set $t_i = \frac{(\vec{\mathbf{x}} \cdot \vec{\mathbf{v}}_i)^2}{\vec{\mathbf{v}}_i \cdot \vec{\mathbf{v}}_i}$ and $c_i = \|\vec{\mathbf{v}}_i\|^2 \|\vec{\mathbf{u}}_i\|^2$, then we get the following problem (example 1) Maximize $\|A\vec{\mathbf{x}}\|$ subject to $\|\vec{\mathbf{x}}\| \le 1$

which is the same as

Maximize $\sum_{i=0}^{r} c_i t_i$ subject to $\sum_{i=0}^{n} t_i \leq 1, t_i \geq 0$

The solution is to choose the *i* with the largest c_i , and set $t_i = 1$ and $t_j = 0$ otherwise.

Least squares: To minimize $||A\vec{\mathbf{x}} - \vec{\mathbf{b}}||$ we want the *i*th coordinates to match, $\vec{\mathbf{x}} \cdot \vec{\mathbf{v}}_i = \frac{\vec{\mathbf{b}} \cdot \vec{\mathbf{u}}_i}{\vec{\mathbf{u}}_i \cdot \vec{\mathbf{u}}_i}$, in other words

$$ec{\mathbf{x}} = \sum_{i=0}^r rac{ec{\mathbf{b}}\cdotec{\mathbf{u}}_i}{\|ec{\mathbf{v}}_i\|^2\|ec{\mathbf{u}}_i\|^2}ec{\mathbf{v}}_i$$

The number $\sqrt{c_i}$ is called the *i*th **singular value** and is often called an eigenvalue by non-mathematicians.

MA322-001 Apr $25~\mathrm{Quiz}$

Name: _____

7.4 Let A be the rectangular matrix
$$A = \begin{bmatrix} 6.0 & 8.0 \\ 12.4 & 15.7 \\ 23.6 & 32.3 \\ 35.6 & 48.3 \\ 48.4 & 63.7 \end{bmatrix}$$
 and let $\vec{\mathbf{b}} = \begin{bmatrix} 1.4 \\ 2.1 \\ 4.0 \\ 5.9 \\ 8.0 \end{bmatrix}$.

We want to solve $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$.

(a) For
$$\vec{\mathbf{u}}_1 = \begin{bmatrix} 1\\ 2\\ 4\\ 6\\ 8 \end{bmatrix}$$
 and $\vec{\mathbf{v}}_1 = \begin{bmatrix} 6\\ 8 \end{bmatrix}$, compute $A_1 = \vec{\mathbf{u}}_1 \vec{\mathbf{v}}_1^T$. Is it close to A ?

(b) Compute
$$\vec{\mathbf{x}}_1 = \frac{\vec{\mathbf{b}}^T \vec{\mathbf{u}}_1}{\|\vec{\mathbf{u}}_1\|^2 \|\vec{\mathbf{v}}_1\|^2} \vec{\mathbf{v}}_1.$$

(c) Compute $A_1 \vec{\mathbf{x}}_1$. Is it close to $\vec{\mathbf{b}}$?

(d) Use algebra to simplify the expression $A_1 \vec{\mathbf{x}}_1$. Does it have a name in terms of $\vec{\mathbf{b}}$ and $\vec{\mathbf{u}}_1$?

(f) Set $\vec{\mathbf{x}}_2 = \vec{\mathbf{x}}_1 + \frac{\vec{\mathbf{b}}^T \vec{\mathbf{u}}_2}{\|\vec{\mathbf{u}}_2\|^2 \|\vec{\mathbf{v}}_2\|^2} \vec{\mathbf{v}}_2$. Use algebra to simplify the expression $A_2 \vec{\mathbf{x}}_2$.

(g) Does $A_2 \vec{\mathbf{x}}_2$ have a name in terms of $\vec{\mathbf{b}}$ and $\{\vec{\mathbf{u}}_1, \vec{\mathbf{u}}_2\}$?

(h) Compute $A_2 \vec{\mathbf{x}}_2$. Is it close to $\vec{\mathbf{b}}$? Can we do any better with $A\vec{\mathbf{x}}$?