
Your problem

Task Duration Finish first
A: 6 min Nothing
B: 20 min A
C: 15 min A
D: 40 min B, C
E: 40 min Nothing
F: 4 min D, E

Fill in the times in the corners of each task bubble. Start
Duration−−−−→ Finish

A

Early: 6

Late: 6

B

Early: 20

Late: 20

C

Early: 15

Late: 15

D

Early: 40

Late: 40

E

Early: 40

Late: 40

F

Early: 4

Late: 4

Order the tasks into a priority list based on their float time, from highest priority to lowest.

Priority list:

You only have two workers. Place the tasks on the time-line according to the priority
list.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Friend #1

You

Now place the tasks where you think they should go:
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Friend #1

You



Critical path analysis

Critical path analysis optimisitically assumes we have enough resources to complete tasks
as efficiently as possible. It calculates how quickly each task can be completed, and then
the “float” of each task: how much each task can be delayed before it delays the entire
project. In the real world, resources are tight, and so the float is used to prioritize which
task should be worked on with the limited resources available. Tasks with no float, should
be done ASAP, while tasks with lots of float can be put off without delaying the project as
a whole.

Instructions

(Early) The “early” rows are the earliest time the task can start and finish. This is calculated
from left to right. The earliest start time is the maximum of the earliest finish times of the
tasks that need to be finished first. If no task needs to be finished first, then it can be started
immediately, time = 0. The earliest finish time is the earliest start time plus the duration.

(Late) The “late” rows are the latest time the task can start and finish without delaying
the optimistic project completion time (which is 70 minutes in this case). This calculated
from right to left (backwards). The latest finish time is the minimum of the the latest start
times of the tasks that depend on this one being finished. If no task depends on it being
finished first, then it can be finished at the very end (70 minutes in this case). The latest
start time is the latest finish time minus the duration.

(Float) The vertical arrows have the “float”. This is calculated as the difference between
the earliest start time and the latest start time (or the earliest finish time and the latest
finish time; you get the same number both times).

(Priority) The vertical arrows have the float. Tasks with float = 0 are called critical and
must be done as soon as possible to avoid delaying the project. Tasks with small float should
be higher priority than tasks with large float. Put the tasks in order from highest priority
(lowest float) to lowest priority (highest float). If two tasks have the same priority, I usually
put an equals sign between them, and if one task has a higher priority I put a > greater
than sign > between them.

(First timeline) In this timeline, place tasks onto the timeline following these four rules:
(1) you cannot overlap tasks, (2) a task cannot start before all of its “finish first” tasks are
finished, (3) if a task can be started, then you must start a task, and (4) in case more than
one task can be started, choose the one with the highest priority (from the priority list) first.
That means that once the priority list, durations, and “finish first”s are given, there is only
one correct timeline.

(Second timeline) However, that priority list might give a cruddy timeline. So in this
timeline, you only have to obey the first two rules. So whenever a task finishes, you can
choose any task to start (obeying rule 2, but possibly disobeying 4) or even just chill out
and don’t start anything (disobeying 3).



Answers

Here are the exactly correct answers to the first three. If your answer is different, then it is
probably wrong.

A

Early: 0 66

Late: 0 66

0 0 B

Early: 6 2620

Late: 6 2620

0 0

C

Early: 6 2115

Late: 11 2615

5 5

D

Early: 26 6640

Late: 26 6640

0 0

E

Early: 0 4040

Late: 26 6640

26 26

F

Early: 66 704

Late: 66 704

0 0

Priority list: A = B = D = F > C > E.

You can scramble A,B,D, F if you want. So F = D = B = A > C > E is also right.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Friend #1

You A B C D F

E

Using our basic critical path analysis we get that the project could have been completed in
70 minutes with unlimited resources, but if we use the float time to prioritize tasks we end
up taking 85 minutes.

Better answer

The problem is that we were too impatient to start tasks. We started a very long duration
and very low priority task (E), and that prevented us from doing shorter, higher priority
tasks a few minutes later. Here is a better (best possible) schedule:

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Friend #1

You A B D F

C E


