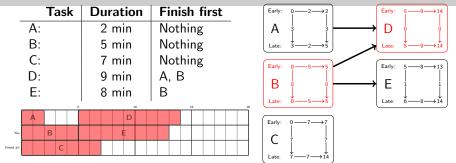
MA111: Contemporary mathematics

Task	Duration	Finish first	Early: $0 \longrightarrow 2 \longrightarrow 2$ Early: $5 \longrightarrow 9 \longrightarrow 14$
A:	2 min	Nothing	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
B:	5 min	Nothing	Late: $3 \longrightarrow 2 \longrightarrow 5$
C:	7 min	Nothing	Early: 0 — 5 → 5 Early: 5 — 8 → 13
D:	9 min	A, B	B \longleftrightarrow E
E:	8 min	В	Late: 0 − 5 → 5
Priority: $B = D > E > A > C$			Early: 0 — 7 → 7
You B C	D D	15 20	C

Why might someone think C > E > D > A > B is a better priority list? Schedule:

Exam 4 is Tue Dec 16th, 2014 from 3:30pm to 5:30pm

Today we'll handle a different idea for priority.


Important concepts

- Tasks have a duration
- Tasks have dependencies that must be done first
- The schedule lists the start time of each task
- Simplest way to schedule is a priority list- do them in this order
- The float time is the difference between the earliest the task could be started (after dependencies are finished) versus the latest the task could be started (to finish "on time")

Calculating the float time

- Earliest start time: maximum of the earliest finished times of the dependencies (0 if no dependencies)
- Earliest finish time: earliest start time plus duration
 Use those two rules to calc all EST and EFT from left to right
- Latest finish time: minimum of the latest start times of tasks that depend on it ("at the end" if nothing depends on it)
- Latest start time: latest finish time minus duration
 Use those two rules to calc all LST and LFT from right to left (backwards)
- Float time: LFT minus EFT or LST minus EST (same number)
 The smaller the float time, the higher priority the task should be

Exit quiz

- There are several paths in this project: $A \to \overline{D}$, $B \to \overline{D}$, $B \to E$, and C
- We want to rank A vs B vs C. Assume the other two have been done.
- How long does it take to do $A \rightarrow D$?
- How long does it take to do $B \to D$ and $B \to E$ (unlimited workers)?
- How long does it take to do C?
- Which should you work on if you want to finish up quickly?
 A (and its paths), B (and its paths), or C (and its very short path)?