Explain your answers, briefly, on each page. Numbers without justification are worth no credit.

1. Perform the following arithmetic operations or explain why they are not defined.

(a)
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + 100 \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + 100 \begin{bmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \cdot \begin{bmatrix} 7 & 8 & 9 \\ 10 & 20 & 0 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ a & 0 & 1 \end{bmatrix}^{-1}$$
 (for *a* an arbitrary real number)

2. Convert between a description of a linear transformation and its matrix.

(a) $T : \mathbb{R}^3 \to \mathbb{R}^2$ is a linear transformation, $T(\vec{\mathbf{e}}_1) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $T(\vec{\mathbf{e}}_2) = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$, and $T(\vec{\mathbf{e}}_3) = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$. What is $T(\vec{\mathbf{v}})$ if $\vec{\mathbf{v}} = \vec{\mathbf{e}}_1 + 100\vec{\mathbf{e}}_2$?

(b) Find a matrix A such that $T(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$ for all $\vec{\mathbf{x}} \in \mathbb{R}^3$, where T is from part (a).

(c) If $S : \mathbb{R}^3 \to \mathbb{R}^2$ is a linear transformation defined by $S(\vec{\mathbf{x}}) = B\vec{\mathbf{x}}$ for $B = \begin{bmatrix} 1 & 10 & 100 \\ 2 & 20 & 200 \end{bmatrix}$, what is $S(\vec{\mathbf{e}}_3)$?

(d) If $F : \mathbb{R}^3 \to \mathbb{R}^3$ switches the \mathbf{i} and \mathbf{k} components (the "x" and "z" components) then find a matrix C so that $F(\mathbf{v}) = C\mathbf{v}$ for every \mathbf{v} in \mathbb{R}^3 . **Hint:** What is $F(\mathbf{e}_1)$?

3. For
$$B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ -1 & -1 & 0 \end{bmatrix}$$
, $C = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 2 & 0 \end{bmatrix}$, and $D = \begin{bmatrix} 7 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 9 \end{bmatrix}$.
Find a matrix A satisfying the given properties:

(a) $A^2 = I_2$ but $A \neq \pm I_n$ (Challenge: A has no zero entries)

(b) AB = 0 but $BA \neq 0$ (Challenge: find all A)

(c) $CA = I_2$ (Challenge: find all A)

(d) AD = DA but $A \neq 0, A \neq I_3$ (Challenge: find all A)

4. For each matrix A explain why it is invertible or not.

	$\begin{bmatrix} 3\\2\\2 \end{bmatrix}$		$\begin{bmatrix} 3\\2\\9 \end{bmatrix}$	
(b)	$\left[\begin{array}{c}3\\0\\3\end{array}\right]$	2 0 2	$\begin{bmatrix} 2\\7\\8 \end{bmatrix}$	
(c)	$\left[\begin{array}{c}1\\0\\0\end{array}\right]$	$2 \\ 5 \\ 0$	$\begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}$	
(d)	$\left[\begin{array}{c} 0\\ 0\\ 0\end{array}\right]$	$\begin{array}{c} 1\\ 0\\ 0\end{array}$	$\begin{bmatrix} 2\\ 3\\ 0 \end{bmatrix}$	
(e)	$\left[\begin{array}{c} 0\\ 0\\ 1\end{array}\right]$	$\begin{array}{c} 1 \\ 0 \\ 0 \end{array}$	$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$	