
4.0 Vocabulary

This is just a quick set of notes on some technical math vocabulary I’d like to be able to use
in class. It’s hard to deal with function spaces without some fancy language now and then.

A set is a mathematical object whose sole property is a “containment predicate.” For any
other mathematical object x, a set Y must answer the question “is x in Y ?” In symbols,
this is written x ∈ Y if the answer is yes, and x /∈ Y if the answer is no. If x ∈ Y we say
that “x is in Y ” and that “x is an element of Y ” and that “Y contains x.”

Example: The set of real numbers is denoted by R. It answers the question yes if you
give it a real number, and no otherwise. For example, 2 + 2 ∈ R and limx→∞ 1/x ∈ R, but√
−1 /∈ R and limx→∞ x2 /∈ R.

A function f : X → Y is a mathematical object with three properties: its “domain,”
its “codomain,” and its “rule”. The domain X and codomain Y are sets. The rule is a
mathematical object that must answer the question “what is f(x)?” whenever x ∈ X.
Furthermore, its answer f(x) must satisfy f(x) ∈ Y and must only depend on x (if you ask
the rule multiple times for the same x, it must always give the same answer f(x)).

The set of all functions with domain X and codomain Y is written as Y X . We often
abbreviate {1, 2, 3, . . . , n} as just n. So that Y n means functions from {1, 2, 3, . . . , n} to Y .

Example: For example R3 is all functions v⃗ : {1, 2, 3} → R where the value v⃗(1) of the

function v⃗ at the input x = 1 is labelled v1. In other words
[
7
8
9

]
is the function f with values

f(1) = 7, f(2) = 8, f(3) = 9.

Example: A vector field is a function whose domain is some cool thing like the Earth
and whose codomain is some vector space like the collection of possible wind velocities. The
function describes the velocity of the wind, more specifically, at any location x on the Earth,
it describes the velocity f(x) of the wind at that location.

The direct product of two sets X × Y is a set that contains exactly things of the form
(x, y) for x ∈ X and y ∈ Y . You can also view it as the set of functions from {1, 2} into the
combined set of X ∪ Y where f(1) ∈ X and f(2) ∈ Y .

An operation is basically a function, but we are a little more flexible on how it is written.
An infix binary operation like vector addition on a vector space V is a function with domain
V × V and codomain V . Instead of writing +(v⃗, w⃗) we usually write it in infix notation,
v⃗+ w⃗. The “operation” part mostly just says that if v⃗ and w⃗ are vectors, so is v⃗+ w⃗ (that
is the “codomain” part of the definition of function).

A subset of a set Z is a set Y (abbreviated Y ⊆ Z) that answers no whenever Z answers no.
In other words, if x /∈ Z then x /∈ Y , or more positively, if x ∈ Y then x ∈ Z. The integers
are a subset of the real numbers, and the real numbers are a subset of the complex numbers.
Polynomials are a subset of the continuous functions which are a subset of all real-valued
functions.

There are not very many ways to specify a set by itself. They are usually big deals. For
small ones, you can just list everything between curly braces { and }. Like the set of positive
integers whose square is a one digit decimal number is {1, 2, 3}.



Specifying subsets is easier: Z = {x ∈ Y : f(x)} means the subset of Y where x ∈ Z
means that not only is x ∈ Y but also the function f : Y → {true, false} returns true
for f(x). Usually functions like f(x) are written as equations or inequalities, sometimes
with quantifiers. Like D = {(x, y) ∈ R2 : x2 + y2 ≤ 1} means the filled in circle of radius
sitting in the plane R2. d

dx
/∈ D since d

dx
/∈ R (it is a differential operator, not a number),

(2, 3) /∈ D since 22 + 32 = 13 ̸≤ 1. However (1/π, 1/10) ∈ D since 1/π ∈ R and 1/10 ∈ R
and 1/π2 + 1/102 ≤ 1/9 + 1/100 ≤ 1.

4.1 Vector spaces

A vector space is a set V (whose elements v⃗ are called vectors) with two operations
+ : V × V → V and · : R × V → V that satisfy property (a) through (f) below. For
a, b, c ∈ R and u⃗, v⃗, w⃗ ∈ V , we usually write:
+(v⃗, w⃗) as v⃗ + w⃗,
·(a, v⃗) as av⃗,
·(0, v⃗) as 0⃗ (there is an axiom that says this vector does not depend on v⃗),
·(−1, v⃗) as −v⃗, and
+(v⃗, ·(−1, w⃗)) as v⃗ − w⃗.

(1) u⃗+ (v⃗ + w⃗) = (u⃗+ v⃗) + w⃗

(2) 0u⃗ = 0v⃗ (the common value is written 0⃗)
(3) 1v⃗ = v⃗
(4) a(bv⃗) = (ab)v⃗
(5) a(v⃗ + w⃗) = av⃗ + aw⃗
(6) (a+ b)v⃗ = av⃗ + bv⃗

One also has v⃗ − v⃗ = 0⃗, v⃗ + 0⃗ = v⃗, and v⃗ + w⃗ = w⃗ + v⃗.

Example Basically the only vector spaces we use are RX (or CX in small part of chapter
5). However, these are very general.

A subspace of a vector space V is a subset W (abbreviated W ≤ V ) that is also a vector
space if we use the same + and · from V . It turns out one only needs to check three things

(0) 0⃗ ∈ W
(+) If v⃗ ∈ W and w⃗ ∈ W , then v⃗ + w⃗ ∈ W
(·) If v⃗ ∈ W and a ∈ R, then av⃗ ∈ W

The first one avoids a technical problem (“no vectors” is not a subspace, it breaks a ton of
formulas that work otherwise; if you want a basically “nothing” vector space use the single
vector 0⃗). The second one says that if we make the domain of + only be W , then we can
also make its codomain only be W . The third one says that if we make the domain of · be
W , then we can also make its codomain only be W . Once this is checked, properties (a)
through (f) are automatic (they don’t mention V or W except to say that u⃗, v⃗, w⃗ are in
them).

Correction In truth, the only vector spaces we use are subspaces of RX .



There are two main ways to specify a subspace – by specifying a requirement on the vectors
to “winnow”, or by giving a few “seed” vectors.

Subspace by property: We can specify a subspace the same way we specify subsets:
W = {(x, y) ∈ R2 : y = 2x}. These are nice because it is pretty easy to check if v⃗ ∈ W (if
the property in W is reasonable at all).

Subspace by span: We can also give a set of vectors S ⊆ V (so all contained in one vector
space V ) and define a subspace ⟨S⟩ to be the set whose elements are the linear combinations
of (finitely many at a time) vectors in S.

4.2 standarizing a little

A linear transformation is a function T : V → W whose domain and codomain are vector
spaces and whose rule satisfies the properties:

(0) T (0⃗) = 0⃗
(+) T (u⃗+ v⃗) = T (u⃗) + T (v⃗)
(·) T (av⃗) = aT (v⃗)

The (0) property is actually automatic from the (·) property and the definition of 0⃗ (in both

V and W ) since T (0⃗) = T (0v⃗) = 0T (v⃗) = 0⃗. However, I thought it might make it easier to
remember.

The absolute most standard form of the subspace by property is the null space: if T : V →
W is a linear transformation, then Nul(T ) = {v⃗ ∈ V : T (v⃗) = 0⃗}.
The absolute most standard form of the subspace by span is the column space: if T :
V → W is a linear transformation, then Col(R) is the span of S = {T (v⃗) : v⃗ ∈ V }. If
S ′ spans V , then you can just use S = {T (v⃗) : v⃗ ∈ S ′}. When V = Rn, you can use
S = {T (⃗ei) : i = 1, 2, . . . , n} which are just the columns of the matrix of T , hence the name.

Every subspace of V is the null space of some linear transformation T : V → W , and every
subspace is the column space of some linear transformation T : U → V .

The null space formulation expresses the subspace as the vectors satisfying some equations
(T (v⃗) = 0⃗ can usually be written as some very simple equations). The column space
formulation expresses the subspace as what you get if you start with a few vectors.

4.4 seriously standardizing

Every subspace W ≤ V is the column space of T : RX → V where T is both 1-1 and onto.

In other words, for every vector w⃗ ∈ W there is precisely one vector ˆ⃗w =
∑

wxe⃗x ∈ RX with

T ( ˆ⃗w) = w⃗ (and T (x⃗) is always a vector in W ). The numbers wx (where we keep track of

the x; this literally just means the function ˆ⃗w) are called the coordinates of w⃗ with respect
to T (or sometimes, “with respect to the basis {T (⃗ex)}”).
This lets us take whatever weird vectors are in W and treat them as collections of numbers.
If X = {1, 2, . . . , n}, then we can imagine that vectors in W are just column vectors (they

aren’t; w⃗ is some weird vector, but it is also T ( ˆ⃗w) where ˆ⃗w is a column vector).



For example 3 sin(x) +
√
2 cos(x) is not a column vector, but in the vector subspace W =

{f : f ′′+f = 0} of RR consisting of solutions to the differential equation y′′ = −y it could be
represented by

[
3√
2

]
with respect to the basis {sin(x), cos(x)} or the linear transformation

T : R2 → RR defined by T (a, b) = a sin(x) + b cos(x).



MA322-007 Mar 3 Quiz Name:

HW#4. Is the following a subspace? Show the subspace check.
W = {(x, y) : 3x+ 2y = 5} ⊆ R2

HW#4’ Is the following a subspace? Show the subspace check.
W = {(x, y) : 3x+ 2y = 0} ⊆ R2

HW#5 Is the following a subspace? Show the subspace check.
W = {t 7→ at2 : a ∈ R} ⊆ RR

HW#6 Is the following a subspace? Show the subspace check.
W = {t 7→ t2 + a : a ∈ R} ⊆ RR



HW#13 Let v⃗1 =

 1
0

−1

, v⃗2 =

 2
1
3

, v⃗3 =

 4
2
6

, w⃗ =

 3
1
2

.
(a) How many vectors are in {v⃗1, v⃗2, v⃗3}? Is w⃗ ∈ {v⃗1, v⃗2, v⃗3}?

(b) How many vectors are in Span({v⃗1, v⃗2, v⃗3})? Is w⃗ ∈ Span({v⃗1, v⃗2, v⃗3})?

4.2 Write the null space of A =

[
1 2 0
0 0 1

]
as the span of the columns of a matrix N .


