MA322-007 Apr 9

6.3 - Projections

The **projection** of a vector $\vec{\mathbf{v}}$ onto a vector $\vec{\mathbf{w}}$ is the multiple of $\vec{\mathbf{w}}$ that is nearest to $\vec{\mathbf{v}}$. **Calculus interlude:** The multiples of $\vec{\mathbf{w}}$ are $t\vec{\mathbf{w}}$, so which value of t is best? Let $f(t) = \|\vec{\mathbf{v}} - t\vec{\mathbf{w}}\|$. Then

$$f(t)^{2} = \langle \vec{\mathbf{v}} - t\vec{\mathbf{w}}, \vec{\mathbf{v}} - t\vec{\mathbf{w}} \rangle = \langle \vec{\mathbf{v}}, \vec{\mathbf{v}} \rangle - 2\langle \vec{\mathbf{v}}, \vec{\mathbf{w}} \rangle t + \langle \vec{\mathbf{w}}, \vec{\mathbf{w}} \rangle t^{2}$$

is quadratic, so its minimum (and the minimum of f(t)) occurs at " $-\frac{b}{2a}$ ", that is at $t = \frac{\vec{\mathbf{v}} \cdot \vec{\mathbf{w}}}{\vec{\mathbf{w}} \cdot \vec{\mathbf{w}}}$. The **formula** for the projection of $\vec{\mathbf{v}}$ onto $\vec{\mathbf{w}}$ is thus

$$\operatorname{proj}_{\vec{\mathbf{w}}}(\vec{\mathbf{v}}) = \frac{\vec{\mathbf{v}}\cdot\vec{\mathbf{w}}}{\vec{\mathbf{w}}\cdot\vec{\mathbf{w}}}\vec{\mathbf{w}}$$

Example: Define $\vec{\mathbf{g}}_1 = \begin{bmatrix} 4/9\\ 4/9\\ 7/9 \end{bmatrix}$, $\vec{\mathbf{g}}_2 = \begin{bmatrix} 1/9\\ -8/9\\ 4/9 \end{bmatrix}$, $\vec{\mathbf{g}}_3 = \begin{bmatrix} 8/9\\ -1/9\\ -4/9 \end{bmatrix}$ and $\vec{\mathbf{v}} = \begin{bmatrix} 1\\ 6\\ 5 \end{bmatrix}$.

By the way, $\vec{\mathbf{g}}_i \cdot \vec{\mathbf{g}}_j = 0$ if $i \neq j$ and $\vec{\mathbf{g}}_i \cdot \vec{\mathbf{g}}_i = 1$.

Find the projection of $\vec{\mathbf{v}}$ onto $\vec{\mathbf{g}}_1$: $\vec{\mathbf{g}}_1 \cdot \vec{\mathbf{g}}_1 = ?$ $\vec{\mathbf{v}} \cdot \vec{\mathbf{g}}_1 = ?$

Find the projection of $\vec{\mathbf{v}}$ onto $\vec{\mathbf{g}}_2$: $\vec{\mathbf{g}}_2 \cdot \vec{\mathbf{g}}_2 = ?$ $\vec{\mathbf{v}} \cdot \vec{\mathbf{g}}_2 = ?$

Find the projection of $\vec{\mathbf{v}}$ onto $\vec{\mathbf{g}}_3$: $\vec{\mathbf{g}}_3 \cdot \vec{\mathbf{g}}_3 =?$ $\vec{\mathbf{v}} \cdot \vec{\mathbf{g}}_3 =?$

What happens when you add them up?

Find x_1 , x_2 , and x_3 such that $\vec{\mathbf{v}} = x_1 \vec{\mathbf{g}}_1 + x_2 \vec{\mathbf{g}}_2 + x_3 \vec{\mathbf{g}}_3$.

How does this magic work? Well, define the matrix $G = \begin{bmatrix} \vec{\mathbf{g}}_1 & \vec{\mathbf{g}}_2 & \vec{\mathbf{g}}_3 \end{bmatrix} = \begin{bmatrix} 4/9 & 1/9 & 8/9 \\ 4/9 & -8/9 & -1/9 \\ 7/9 & 4/9 & -4/9 \end{bmatrix}$. How is $G^T G$ related to $\langle \vec{\mathbf{g}}_i, \vec{\mathbf{g}}_i \rangle$?

So that means $G^{-1} = G^T$. Hence multiplying by G^T solves systems of equations, like $G\vec{\mathbf{x}} = \vec{\mathbf{v}}$.

Example

6.4 and 6.5 - Gram-Schmidt and Least Squares

 $\Gamma \circ \circ \neg$

Let
$$\vec{\mathbf{v}}_1 = \begin{bmatrix} 4\\4\\7 \end{bmatrix}$$
, $\vec{\mathbf{v}}_2 = \begin{bmatrix} 16\\7\\10 \end{bmatrix}$, and let $A = \begin{bmatrix} \uparrow & \uparrow\\\vec{\mathbf{v}}_1 & \vec{\mathbf{v}}_2\\\downarrow & \downarrow \end{bmatrix}$. Set $\vec{\mathbf{b}} = \begin{bmatrix} 1\\6\\5 \end{bmatrix}$ and $\vec{\mathbf{x}}_1 = \begin{bmatrix} x_1\\x_2 \end{bmatrix}$.

We want to find x_1 and x_2 so that $x_1\vec{v}_1 + x_2\vec{v}_2 = \vec{b}$, that is, find \vec{x} so that $A\vec{x} = \vec{b}$.

We cannot directly use dot products, because the columns of A are not orthogonal. We will replace A with a matrix G that does have orthogonal columns.

We'll keep the first column $\vec{\mathbf{g}}_1 = \vec{\mathbf{v}}_1$, but the second column of A points in the $\vec{\mathbf{g}}_1$ direction:

$$\vec{\mathbf{v}}_2 \cdot \vec{\mathbf{g}}_1 = 162$$
 $\vec{\mathbf{g}}_1 \cdot \vec{\mathbf{g}}_1 = 81$ $\operatorname{proj}_{\vec{\mathbf{g}}_1}(\vec{\mathbf{v}}_2) = 162/81\vec{\mathbf{g}}_1 = 2\vec{\mathbf{g}}_1 = \begin{bmatrix} 8\\ 8\\ 14 \end{bmatrix}$.

If we set
$$\vec{\mathbf{g}}_2 = \vec{\mathbf{v}}_2 - \operatorname{proj}_{\vec{\mathbf{v}}_1}(\vec{\mathbf{v}}_2) = \begin{bmatrix} 8\\ -1\\ -4 \end{bmatrix}$$
 then
 $\vec{\mathbf{g}}_1 \cdot \vec{\mathbf{g}}_2 = 0$ $\vec{\mathbf{g}}_2 \cdot \vec{\mathbf{g}}_2 = 81$ $\vec{\mathbf{v}}_2 = 2\vec{\mathbf{g}}_1 + \vec{\mathbf{g}}_2$

How does this relate to $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$? Well we can write $A\vec{\mathbf{x}}$ in terms of G:

$$A\vec{\mathbf{x}} = x_1\vec{\mathbf{v}}_1 + x_2\vec{\mathbf{v}}_2 = x_1\vec{\mathbf{g}}_1 + x_2(2\vec{\mathbf{g}}_1 + \vec{\mathbf{g}}_2) = (x_1 + 2x_2)\vec{\mathbf{g}}_1 + (x_2)\vec{\mathbf{g}}_2$$

And we can almost write $\vec{\mathbf{b}}$ in terms of G:

$$\vec{\mathbf{b}} \cdot \vec{\mathbf{g}}_{1} = 63 \qquad \vec{\mathbf{g}}_{1} \cdot \vec{\mathbf{g}}_{1} = 81 \qquad \operatorname{proj}_{\vec{\mathbf{g}}_{1}}(\vec{\mathbf{b}}) = 63/81\vec{\mathbf{g}}_{1} = 7/9\vec{\mathbf{g}}_{1} = 1/9 \begin{bmatrix} 28\\28\\49 \end{bmatrix}.$$
$$\vec{\mathbf{b}} \cdot \vec{\mathbf{g}}_{2} = -18 \qquad \vec{\mathbf{g}}_{2} \cdot \vec{\mathbf{g}}_{2} = 81 \qquad \operatorname{proj}_{\vec{\mathbf{g}}_{2}}(\vec{\mathbf{b}}) = -18/81\vec{\mathbf{g}}_{1} = -2/9\vec{\mathbf{g}}_{2} = 1/9 \begin{bmatrix} -16\\2\\8 \end{bmatrix}.$$
$$\begin{bmatrix} -16\\2\\8 \end{bmatrix}.$$

Now we get sneaky, and set $\vec{\mathbf{g}}_3 = \vec{\mathbf{b}} - \operatorname{proj}_{\vec{\mathbf{g}}_1}(\vec{\mathbf{b}}) - \operatorname{proj}_{\vec{\mathbf{g}}_2}(\vec{\mathbf{b}}) = 1/3 \begin{bmatrix} -1 \\ 8 \\ -4 \end{bmatrix}$

 $\vec{\mathbf{g}}_1 \cdot \vec{\mathbf{g}}_3 = 0 \qquad \vec{\mathbf{g}}_2 \cdot \vec{\mathbf{g}}_3 = 0 \qquad \vec{\mathbf{g}}_3 \cdot \vec{\mathbf{g}}_3 = 9 \qquad \vec{\mathbf{b}} = 7/9\vec{\mathbf{g}}_1 + -2/9\vec{\mathbf{g}}_2 + \vec{\mathbf{g}}_3$ Calculate $||A\vec{\mathbf{x}} - \vec{\mathbf{b}}||$ using the $\vec{\mathbf{g}}$ s:

$$\|A\vec{\mathbf{x}} - \vec{\mathbf{b}}\|^2 = \| \left((x_1 + 2x_2)\vec{\mathbf{g}}_1 + (x_2)\vec{\mathbf{g}}_2 \right) - \left(\frac{7}{9}\vec{\mathbf{g}}_1 + \frac{-2}{9}\vec{\mathbf{g}}_2 + \vec{\mathbf{g}}_3 \right) \|^2$$

= $\| \left(x_1 + 2x_2 - \frac{7}{9} \right)\vec{\mathbf{g}}_1 + \left(x_2 - \frac{-2}{9} \right)\vec{\mathbf{g}}_2 + \vec{\mathbf{g}}_3 \|^2$
= $(x_1 + 2x_2 - \frac{7}{9})^2 \|\vec{\mathbf{g}}_1\|^2 + (x_2 - \frac{-2}{9})^2 \|\vec{\mathbf{g}}_2\|^2 + \|\vec{\mathbf{g}}_3\|^2$

This is clearly minimized exactly when $x_1+2x_2 = \frac{7}{9}$ and $x_2 = \frac{-2}{9}$, that is, when $\vec{\mathbf{x}} = \frac{1}{9} \begin{bmatrix} 11\\ -2 \end{bmatrix}$, but it can never be smaller than $\|\vec{\mathbf{g}}_3\|^2 = 9$.

MA322-001 Apr 9 Quiz Let $\vec{\mathbf{v}}_1 = \begin{bmatrix} 3\\4\\0 \end{bmatrix}$, $\vec{\mathbf{v}}_2 = \begin{bmatrix} 1\\3\\0 \end{bmatrix}$, and $\vec{\mathbf{b}} = \begin{bmatrix} 7\\11\\13 \end{bmatrix}$.

1. Find vectors $\vec{\mathbf{g}}_1$ and $\vec{\mathbf{g}}_2$ with the same span as $\vec{\mathbf{v}}_1$ and $\vec{\mathbf{v}}_2$, except with $\vec{\mathbf{g}}_1 \cdot \vec{\mathbf{g}}_2 = 0$.

Name: _____

2. What is the projection of $\vec{\mathbf{b}}$ onto $\vec{\mathbf{g}}_1$

3. What is the projection of $\vec{\mathbf{b}}$ onto $\vec{\mathbf{g}}_2$

4. Define $\vec{\mathbf{g}}_3 = \vec{\mathbf{b}} - \operatorname{proj}_{\vec{\mathbf{g}}_1}(\vec{\mathbf{b}}) - \operatorname{proj}_{\vec{\mathbf{g}}_2}(\vec{\mathbf{b}})$

5. If you write $\vec{\mathbf{b}} = y_1 \vec{\mathbf{g}}_1 + y_2 \vec{\mathbf{g}}_2 + y_3 \vec{\mathbf{g}}_3$, what are y_1, y_2 , and y_3 ?

6. Write each $\vec{\mathbf{v}}_i$ in terms of the $\vec{\mathbf{g}}_j\mathbf{s}$

7. Find the best x_1 , x_2 so that $x_1\vec{\mathbf{v}}_1 + x_2\vec{\mathbf{v}}_2$ is as close to $\vec{\mathbf{b}}$ as possible.

8. How far from $\vec{\mathbf{b}}$ must it be?