MA322-007 Apr 14 - Practice Exam

Name: _____

1.
$$\vec{\mathbf{a}} = \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \vec{\mathbf{b}} = \begin{bmatrix} 1\\2\\-1\\-2 \end{bmatrix}, \vec{\mathbf{c}} = \begin{bmatrix} -0.1\\-0.2\\0.1\\0.2 \end{bmatrix}.$$

(a) Compute $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}$

- (b) Compute $\vec{\mathbf{a}}\cdot\vec{\mathbf{c}}$
- (c) Compute $\|\vec{\mathbf{b}}\|$
- (d) Compute $\|\vec{\mathbf{c}}\|$
- (e) Compute $\frac{\vec{\mathbf{a}}\cdot\vec{\mathbf{b}}}{\vec{\mathbf{b}}\cdot\vec{\mathbf{b}}}\vec{\mathbf{b}}$
- (f) Compute $\frac{\vec{\mathbf{a}}\cdot\vec{\mathbf{c}}}{\vec{\mathbf{c}}\cdot\vec{\mathbf{c}}}\vec{\mathbf{c}}$
- (g) Explain what happened for (e) versus (f)

2.
$$G = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ \vec{\mathbf{g}}_1 & \vec{\mathbf{g}}_2 & \vec{\mathbf{g}}_3 \\ \downarrow & \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} 0.44 & -0.32 & -0.56 \\ -0.08 & 0.74 & -0.58 \\ -0.40 & -0.30 & 0.10 \\ -0.80 & -0.10 & -0.30 \\ 0.00 & 0.50 & 0.50 \end{bmatrix}$$
 and $\vec{\mathbf{v}} = \begin{bmatrix} 5 \\ 0 \\ 6 \\ -12 \end{bmatrix}$
(a) Find $\vec{\mathbf{v}}$ so that $C\vec{\mathbf{v}}$ is as close as possible to $\vec{\mathbf{v}}$.

(a) Find $\vec{\mathbf{y}}$ so that $G\vec{\mathbf{y}}$ is as close as possible to $\vec{\mathbf{v}}$.

(b) How close is that?

You can use that $G^T G = I_3$ without checking it.

3.
$$A = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ \vec{\mathbf{a}}_1 & \vec{\mathbf{a}}_2 & \vec{\mathbf{a}}_3 \\ \downarrow & \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 4 & 1 \\ 1 & 2 & 8 \\ 3 & -4 & 9 \\ 2 & -5 & 5 \end{bmatrix}$$

 $\begin{bmatrix} 2 & -3 & 3 \end{bmatrix}$ Find orthonormal vectors $\vec{\mathbf{g}}_1, \vec{\mathbf{g}}_2, \vec{\mathbf{g}}_3$ that span $\operatorname{Col}(A)$. In other words, $\operatorname{span}(\vec{\mathbf{g}}_1, \vec{\mathbf{g}}_2, \vec{\mathbf{g}}_3) = \operatorname{span}(\vec{\mathbf{a}}_1, \vec{\mathbf{a}}_2, \vec{\mathbf{a}}_3), \vec{\mathbf{g}}_i \cdot \vec{\mathbf{g}}_i = 1$, and $\vec{\mathbf{g}}_i \cdot \vec{\mathbf{g}}_j = 0$ if $i \neq j$.

4.
$$A = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ \vec{\mathbf{a}}_1 & \vec{\mathbf{a}}_2 & \vec{\mathbf{a}}_3 \\ \downarrow & \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 5 & -10 & 0 \\ -8 & 10 & 30 \\ 1 & 1 & -7 \\ -3 & 7 & 1 \end{bmatrix}$$
 and $\vec{\mathbf{b}} = \begin{bmatrix} 2 \\ 15 \\ 4 \\ -31 \\ 38 \end{bmatrix}$

(a) Use RREF to show that there is no $\vec{\mathbf{x}}$ with $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$.

(b) Use G to find the $\vec{\mathbf{x}}$ with $A\vec{\mathbf{x}}$ as close $\vec{\mathbf{b}}$ as possible.

$$G = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ \vec{\mathbf{g}}_1 & \vec{\mathbf{g}}_2 & \vec{\mathbf{g}}_3 \\ \downarrow & \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} 0.1 & -0.3 & 0.7 \\ 0.5 & 0.5 & 0.5 \\ -0.8 & 0.4 & 0.4 \\ 0.1 & -0.5 & 0.3 \\ -0.3 & -0.5 & 0.1 \end{bmatrix}$$

You can use that $G^T G = I_3$ and that $G^T A = \begin{bmatrix} -10 & 15 & 25 \\ 0 & -5 & 15 \\ 0 & 0 & 10 \end{bmatrix}$

Answers:

2.
$$\vec{\mathbf{y}} = \begin{bmatrix} 5\\10\\10 \end{bmatrix}$$
, $\vec{\mathbf{e}} = \vec{\mathbf{v}} - G\vec{\mathbf{y}} = \begin{bmatrix} -1.6\\1.2\\2.0\\-2.0\\-2.0 \end{bmatrix}$, a distance of $\|\vec{\mathbf{e}}\| = 4$
3. $G = \begin{bmatrix} \uparrow & \uparrow & \uparrow\\\vec{\mathbf{g}}_1 & \vec{\mathbf{g}}_2 & \vec{\mathbf{g}}_3\\\downarrow & \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} 0.25 & 0.30 & -0.85\\-0.25 & 0.50 & 0.25\\0.25 & 0.70 & 0.35\\0.75 & 0.10 & 0.05\\0.50 & -0.40 & 0.30 \end{bmatrix}$

4. First solve $G\vec{\mathbf{y}} = \vec{\mathbf{b}}$ as $\vec{\mathbf{y}} = G^T\vec{\mathbf{b}}$. Then solve $G^T A\vec{\mathbf{x}} = G^T\vec{\mathbf{b}} = \vec{\mathbf{y}}$.

$$\vec{\mathbf{y}} = G^T \vec{\mathbf{b}} = \begin{bmatrix} \vec{\mathbf{g}}_1 \cdot \vec{\mathbf{b}} \\ \vec{\mathbf{g}}_2 \cdot \vec{\mathbf{b}} \\ \vec{\mathbf{g}}_3 \cdot \vec{\mathbf{b}} \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \\ 5 \end{bmatrix}$$

Solve $G^T A \vec{\mathbf{x}} = \vec{\mathbf{y}}$ as

$$\begin{bmatrix} G^{T}A \mid \vec{\mathbf{y}} \end{bmatrix} = \begin{bmatrix} -10 & 15 & 25 \mid 10\\ 0 & -5 & 15 \mid 5\\ 0 & 0 & 10 \mid 5 \end{bmatrix} \xrightarrow{R_{1}-2.5R_{3}} \begin{bmatrix} -10 & 15 & 0 \mid -2.5\\ 0 & -5 & 0 \mid -2.5\\ 0 & 0 & 10 \mid 5 \end{bmatrix} \xrightarrow{R_{1}+3R_{2}} \xrightarrow{R_{3}/10} \begin{bmatrix} -10 & 0 & 0 \mid -2.5\\ 0 & 0 & 10 \mid 5 \end{bmatrix} \xrightarrow{R_{1}/10} \begin{bmatrix} -10 & 0 & 0 \mid -10.0\\ 0 & -5 & 0 \mid -2.5\\ 0 & 0 & 1 \mid 0.5 \end{bmatrix} \xrightarrow{R_{1}/-10} \begin{bmatrix} 1 & 0 & 0 \mid 1.0\\ 0 & 1 & 0 \mid 0.5\\ 0 & 0 & 1 \mid 0.5 \end{bmatrix} \rightarrow \vec{\mathbf{x}} = \begin{bmatrix} 1.0\\ 0.5\\ 0.5 \end{bmatrix}$$

Note that $A\vec{\mathbf{x}} = \begin{bmatrix} 1\\ 0\\ 12\\ -2\\ 1 \end{bmatrix}$ is not all that close to $\vec{\mathbf{b}} = \begin{bmatrix} 2\\ 15\\ 4\\ -31\\ 38 \end{bmatrix}$ but that the error $\vec{\mathbf{e}} = \begin{bmatrix} 1\\ -8\\ -29\\ 37 \end{bmatrix}$ is perpendicular to every column in A :
 $A^{T}\vec{\mathbf{e}} = \begin{bmatrix} \vec{\mathbf{a}}_{1} \cdot \vec{\mathbf{e}}\\ \vec{\mathbf{a}}_{2} \cdot \vec{\mathbf{e}}\\ \vec{\mathbf{a}}_{3} \cdot \vec{\mathbf{e}} \end{bmatrix} = \begin{bmatrix} 1+75+64-29-111\\ 0-150-80-29+259\\ 0+0-240+203+37 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix}$

If we tried a new $\vec{\mathbf{x}} + \vec{\mathbf{z}}$ then we'd want $A(\vec{\mathbf{x}} + \vec{\mathbf{z}}) = \vec{\mathbf{b}}$ but $A(\vec{\mathbf{x}} + \vec{\mathbf{z}}) = A\vec{\mathbf{x}} + A\vec{\mathbf{z}} = (\vec{\mathbf{b}} - \vec{\mathbf{e}}) + A\vec{\mathbf{z}}$ so what we need is $A\vec{\mathbf{z}} = \vec{\mathbf{e}}$ to cancel, but we just said that $\vec{\mathbf{e}} \cdot A\vec{\mathbf{z}} = 0$. In other words our new $\vec{\mathbf{x}} + \vec{\mathbf{z}}$ may have changed things, but it changed them in completely the wrong direction.