MA322-007 Apr 14

6.5 Least Squares

Solve
$$A\vec{\mathbf{x}} = \vec{\mathbf{v}}$$
 using RREF. $A = \begin{bmatrix} \uparrow & \uparrow \\ \vec{\mathbf{a}}_1 & \vec{\mathbf{a}}_2 \\ \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 9 & 20 \\ -3 & -27 \\ 1 & -11 \end{bmatrix}$ $\vec{\mathbf{v}} = \begin{bmatrix} 4 \\ 9 \\ 0 \\ 3 \end{bmatrix}$

I don't want excuses, I want solutions. Instead of using A directly, let's switch to an orthonormal frame of reference.

(a) Set $\vec{\mathbf{g}}_1$ to be a unit length vector in the direction of $\vec{\mathbf{a}}_1$. In other words, $\vec{\mathbf{g}}_1 = \vec{\mathbf{a}}_1 / \|\vec{\mathbf{a}}_1\|$.

(b) Set $\vec{\mathbf{g}}_2$ to be the unit length vector in the direction of $\vec{\mathbf{a}}_2 - \operatorname{proj}_{\vec{\mathbf{g}}_1}(\vec{\mathbf{a}}_2)$:

(c) Calculate y_1 and y_2 so that $\vec{\mathbf{v}}$ is as close to $y_1\vec{\mathbf{g}}_1 + y_2\vec{\mathbf{g}}_2$ as possible.

$$\mathbf{\vec{e}} = \mathbf{\vec{v}} - \mathbf{\vec{e}} = \mathbf{\vec{v}} = \mathbf{\vec{$$

Great, so we found the answer to a problem I didn't ask. So what? (d) Write \vec{a}_i in terms of \vec{g}_i

(e) Find x_1 and x_2 so that $\vec{\mathbf{v}}$ is as close to $x_1\vec{\mathbf{a}}_1 + x_2\vec{\mathbf{a}}_2$ as possible.

(f) What is the smallest possible error?

$$\mathbf{G} = \begin{bmatrix} \downarrow & \downarrow \\ \mathbf{g}_1 & \mathbf{g}_2 \\ \mathbf{g}_1 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_1 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.10 & 0.54 \\ 0.30 & 0.78 \\ \mathbf{g}_1 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_1 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_1 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_1 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_1 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_1 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_1 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.72 \\ \mathbf{g}_2 & \mathbf{g}_2 \\ \mathbf{g}_2 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0.7$$