MA322-007 Apr 21 - Exam

Name:			
rame.			

1.
$$\vec{\mathbf{a}} = \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$$
, $\vec{\mathbf{b}} = \begin{bmatrix} 7\\5\\-5\\-1 \end{bmatrix}$, $\vec{\mathbf{c}} = \begin{bmatrix} 14\\10\\-10\\-2 \end{bmatrix}$.

- (a) Compute $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}$
- (b) Compute $\vec{\mathbf{a}} \cdot \vec{\mathbf{c}}$
- (c) Compute $\|\vec{\mathbf{b}}\|$
- (d) Compute $\|\vec{c}\|$
- (e) Compute $\frac{\vec{a} \cdot \vec{b}}{\vec{b} \cdot \vec{b}} \vec{b}$
- (f) Compute $\frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{c}}}{\vec{\mathbf{c}} \cdot \vec{\mathbf{c}}} \vec{\mathbf{c}}$
- (g) Explain what happened for (e) versus (f)

2.
$$G = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ \vec{\mathbf{g}}_1 & \vec{\mathbf{g}}_2 & \vec{\mathbf{g}}_3 \\ \downarrow & \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} 0.5 & 0.5 & 0.7 \\ 0.5 & 0.5 & -0.7 \\ 0.5 & -0.5 & 0.1 \\ 0.5 & -0.5 & -0.1 \end{bmatrix} \text{ and } \vec{\mathbf{v}} = \begin{bmatrix} 0 \\ 100 \\ 100 \\ 100 \end{bmatrix} \text{ and } G^TG = I_3.$$

(a) Find $\vec{\mathbf{y}}$ so that $G\vec{\mathbf{y}}$ is as close as possible to $\vec{\mathbf{v}}$.

(b) How close is that?

3.
$$A = \begin{bmatrix} \uparrow & \uparrow & \uparrow & \uparrow \\ \vec{\mathbf{a}}_1 & \vec{\mathbf{a}}_2 & \vec{\mathbf{a}}_3 & \vec{\mathbf{a}}_4 \\ \downarrow & \downarrow & \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} 1 & 1 & 7 & 1 \\ 1 & 1 & -7 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Find orthonormal vectors $\vec{\mathbf{g}}_1$, $\vec{\mathbf{g}}_2$, $\vec{\mathbf{g}}_3$, $\vec{\mathbf{g}}_4$ that span $\operatorname{Col}(A)$. In other words, $\operatorname{span}(\vec{\mathbf{g}}_1, \vec{\mathbf{g}}_2, \vec{\mathbf{g}}_3, \vec{\mathbf{g}}_4) = \operatorname{span}(\vec{\mathbf{a}}_1, \vec{\mathbf{a}}_2, \vec{\mathbf{a}}_3, \vec{\mathbf{a}}_4)$, $\vec{\mathbf{g}}_i \cdot \vec{\mathbf{g}}_i = 1$, and $\vec{\mathbf{g}}_i \cdot \vec{\mathbf{g}}_j = 0$ if $i \neq j$.

4.
$$A = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ \vec{\mathbf{a}}_1 & \vec{\mathbf{a}}_2 & \vec{\mathbf{a}}_3 \\ \downarrow & \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 7 \\ 1 & 1 & 3 \\ 1 & 1 & 4 \end{bmatrix} \text{ and } \vec{\mathbf{b}} = \begin{bmatrix} 0 \\ 100 \\ 100 \\ 100 \end{bmatrix}$$

(a) Use RREF to show that there is no $\vec{\mathbf{x}}$ with $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$.

(b) Use G to find the $\vec{\mathbf{x}}$ with $A\vec{\mathbf{x}}$ as close $\vec{\mathbf{b}}$ as possible.

$$G = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ \vec{\mathbf{g}}_1 & \vec{\mathbf{g}}_2 & \vec{\mathbf{g}}_3 \\ \downarrow & \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} 0.5 & 0.5 & 0.7 \\ 0.5 & 0.5 & -0.7 \\ 0.5 & -0.5 & 0.1 \\ 0.5 & -0.5 & -0.1 \end{bmatrix}$$
Note that $G^TG = I_3$ and $G^TA = \begin{bmatrix} 2 & 1 & 7 \\ 0 & -1 & 0 \\ 0 & 0 & -5 \end{bmatrix}$