MA322-007 May 5 - Final Exam

Name: _____

(a)
$$A = 25 \vec{\mathbf{u}} \vec{\mathbf{u}}^T = \begin{bmatrix} 9 & 12 \\ 12 & 16 \end{bmatrix}$$
 if $\vec{\mathbf{u}} = \frac{1}{5} \begin{bmatrix} 3 \\ 4 \end{bmatrix}$?

(b)
$$B = \vec{\mathbf{v}}\vec{\mathbf{v}}^T = \begin{bmatrix} 4 & 6 \\ 6 & 9 \end{bmatrix}$$
 if $\vec{\mathbf{v}} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$?

(c)
$$C = \frac{4}{7} \vec{\mathbf{w}} \vec{\mathbf{w}}^T - \frac{1}{7} \vec{\mathbf{p}} \vec{\mathbf{p}}^T = \begin{bmatrix} -3 & 4 & 1\\ 4 & 0 & 4\\ 1 & 4 & 5 \end{bmatrix}$$
 if $\vec{\mathbf{w}} = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$ and $\vec{\mathbf{p}} = \begin{bmatrix} 5\\ -4\\ 1 \end{bmatrix}$?

2. $A = \begin{bmatrix} 4 & 12 \\ 12 & 4 \end{bmatrix}$ has eigenpairs $(\lambda_i, \vec{\mathbf{u}}_i)$: $(20, \frac{1}{5} \begin{bmatrix} 3 \\ 4 \end{bmatrix})$ and $(-5, \frac{1}{5} \begin{bmatrix} -4 \\ 3 \end{bmatrix})$. (a) Find a simple expression for $D(i, j) = \vec{\mathbf{u}}_i^T \vec{\mathbf{u}}_j$

(b) Find a simple expression for $L(x, y) = \|\vec{\mathbf{v}}\|^2$ if $\vec{\mathbf{v}} = x\vec{\mathbf{u}}_1 + y\vec{\mathbf{u}}_2$

(c) Find a simple expression for $E(x, y) = \vec{\mathbf{v}}^T A \vec{\mathbf{v}}$ if $\vec{\mathbf{v}} = x \vec{\mathbf{u}}_1 + y \vec{\mathbf{u}}_2$

(d) What values of x, y maximize E(x, y) while keeping L(x, y) = 1?

(e) What values of x, y minimize E(x, y) while keeping L(x, y) = 1?

3.
$$B = \begin{bmatrix} 78 & 52 \\ 4 & 111 \end{bmatrix} \text{ can be written as } B = \sigma_1 \vec{\mathbf{u}}_1 \vec{\mathbf{v}}_1^T + \sigma_2 \vec{\mathbf{u}}_2 \vec{\mathbf{v}}_2^T \text{ where } (\sigma_i, \vec{\mathbf{u}}_i, \vec{\mathbf{v}}_i) \text{ are } \\ \begin{pmatrix} 130, \frac{1}{5} \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \frac{1}{13} \begin{bmatrix} 5 \\ 12 \end{bmatrix} \end{pmatrix} \text{ and } \begin{pmatrix} 65, \frac{1}{5} \begin{bmatrix} -4 \\ 3 \end{bmatrix}, \frac{1}{13} \begin{bmatrix} 12 \\ -5 \end{bmatrix} \end{pmatrix}.$$

You can use that $\vec{\mathbf{u}}_i^T \vec{\mathbf{u}}_j = \vec{\mathbf{v}}_i^T \vec{\mathbf{v}}_j$ is equal to 1 if $i = j$ and is equal to 0 if $i \neq j$.

You can use that $\vec{\mathbf{u}}_i^T \vec{\mathbf{u}}_j = \vec{\mathbf{v}}_i^T \vec{\mathbf{v}}_j$ is equal to 1 if i = j and is equal (a) Find numbers r, s such that $\vec{\mathbf{b}} = r\vec{\mathbf{u}}_1 + s\vec{\mathbf{u}}_2$ if $\vec{\mathbf{b}} = \begin{bmatrix} 1352\\ 3211 \end{bmatrix}$

(b) Find a simple expression for the numbers p, q such that $B\vec{\mathbf{w}} = p\vec{\mathbf{u}}_1 + q\vec{\mathbf{u}}_2$ if $\vec{\mathbf{w}} = x\vec{\mathbf{v}}_1 + y\vec{\mathbf{v}}_2$

(c) Find a simple expression for $L(x, y) = \|\vec{\mathbf{w}}\|^2$ if $\vec{\mathbf{w}} = x\vec{\mathbf{v}}_1 + y\vec{\mathbf{v}}_2$

3. (continued) $B = \begin{bmatrix} 78 & 52 \\ 4 & 111 \end{bmatrix} = \sigma_1 \vec{\mathbf{u}}_1 \vec{\mathbf{v}}_1^T + \sigma_2 \vec{\mathbf{u}}_2 \vec{\mathbf{v}}_2^T$ where $(\sigma_i, \vec{\mathbf{u}}_i, \vec{\mathbf{v}}_i)$ are $\begin{pmatrix} 130, \frac{1}{5} \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \frac{1}{13} \begin{bmatrix} 5 \\ 12 \end{bmatrix} \end{pmatrix}$ and $\begin{pmatrix} 65, \frac{1}{5} \begin{bmatrix} -4 \\ 3 \end{bmatrix}, \frac{1}{13} \begin{bmatrix} 12 \\ -5 \end{bmatrix} \end{pmatrix}$.

(d) Find a simple expression for $E(x,y) = ||B\vec{\mathbf{w}} - \vec{\mathbf{b}}||^2$ with x, y as in (a) and (b)

(e) Find x, y such that E(x, y) is as small as possible

Bonus: As in #3, find $\vec{\mathbf{w}}$ so that $\|B\vec{\mathbf{w}} - \vec{\mathbf{b}}\| < 25\% \|\vec{\mathbf{b}}\|$ and $\|\vec{\mathbf{w}}\| \le 26$. Equivalently, find x, y such that $E(x, y) < 0.25^2 \|\vec{\mathbf{b}}\|^2 \approx 750000$ but $L(x, y) \le 26^2$.