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Abstract. Using the group consisting of the eight Möbius transformations x, −x, 1/x, −1/x, (x −
1)/(x + 1), (x + 1)/(1 − x), (x + 1)/(x − 1), and (1 − x)/(x + 1) we present an enumerative proof of
the classical result for when the element 2 is a quadratic residue in the finite field Fq.

Recall that a nonzero element x in a field F is a quadratic residue if it is a square, that is, we can
write x = y2 where y ∈ F .

Assume that q is an odd prime power and let Fq be the finite field of q elements. The classical
result that −1 is a quadratic residue in Fq if and only if q ≡ 1 mod 4 can be proved by partitioning the
nonzero elements of the field into orbits of the form {x,−x,−1/x, 1/x}. Note that one orbit is {1,−1}.
If α2 = −1 has a solution, then {α,−α} is also an orbit. The remaining orbits all have cardinality 4.
Thus by counting the nonzero elements of the field modulo 4, we obtain that q ≡ 1 mod 4, implying
that q − 1 ≡ 0 ≡ |{1,−1}| + |{α,−α}| mod 4 and hence that the orbit {α,−α} exists, that is, −1 is
a quadratic residue. Similarly, q ≡ 3 mod 4 implies that there is no such orbit and hence −1 is not a
quadratic residue. See [1, Theorem 2.2.7].

We present a similar argument for when the element 2 is a quadratic residue. We use a larger set
of rational functions and we have four different types of orbits.

Theorem 1. Let q be an odd prime power. Then the element 2 is a quadratic residue in the finite
field Fq if and only if q ≡ ±1 mod 8.

Proof. Consider the eight rational functions x, −x, 1/x, −1/x, (x − 1)/(x + 1), (x + 1)/(1 − x),
(x + 1)/(x − 1), and (1 − x)/(x + 1). Note that they form a group G under composition. These
rational functions are Möbius transformations and act naturally on the field Fq with the point at
infinity adjoined, that is, on Fq ∪{∞}. The orbits of this action are as follows. First there is the orbit
{0,±1,∞}. In fact, the group permutes these elements as the vertices of a square, showing that the
group is isomorphic to the symmetric group of a square. Assuming that 2 is a quadratic residue in the
field Fq, we have the orbit B = {±1±

√
2} of size 4. Next, assuming that −1 is a quadratic residue,

we have the orbit C = {±i} of size 2. Finally, the remaining orbits all have size 8.

We now have four cases. In each case, it is enough to count the q − 3 elements in Fq − {0,±1}
modulo 8, hence only keeping track if the orbits B and C occur.
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– If −1 and 2 are both quadratic residues, then both B and C occur, yielding q−3 ≡ 4+2 mod 8,
that is, q ≡ 1 mod 8.

– If −1 and 2 are both not quadratic residues, then all orbits have size 8, yielding q−3 ≡ 0 mod 8,
that is, q ≡ 3 mod 8.

– If −1 is a quadratic residue and 2 is not, then only C occurs, yielding q − 3 ≡ 2 mod 8, that
is, q ≡ 5 mod 8.

– Finally, if 2 is a quadratic residue and −1 is not, then only B occurs, yielding q−3 ≡ 4 mod 8,
that is, q ≡ 7 mod 8. �

A similar proof can be obtained by using the order 6 group H = {x, 1−x, 1/(1−x), x/(x− 1), (x−
1)/x, 1/x}. When q ≡ 3 mod 4, the result follows by counting the number of quadratic residues in
orbits of H. Similarly, when q ≡ 1 mod 4, the result follows by counting the number of quadratic
nonresidues.
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