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Abstract. We define a class of bipartite graphs that correspond naturally with Ferrers
diagrams. We give expressions for the number of spanning trees, the number of Hamiltonian
paths when applicable, the chromatic polynomial and the chromatic symmetric function.
We show that the linear coefficient of the chromatic polynomial is given by the excedance
set statistic.

1. Introduction and Preliminaries

Geometric and algebraic combinatorics span many areas, from the geometry of hy-
perplane arrangements [2], [6], through graph theory [3], [14], to the more algebraic
permutation statistics [8], [11], [12]. An important aspect of all these areas is enumer-
ation, which often illuminates the finer structure of the object under investigation, be
it computing the faces of a polytope [1], [4], [5] or the distribution of permutations
satisfying certain criteria [7].

In this paper we unite these facets of combinatorics via the study of Ferrers graphs,
and in particular answer some of the more pertinent questions concerning enumeration.
More precisely, we define a class of bipartite graphs that we call Ferrers graphs, so called
since the edges in the graphs are in direct correspondence with the boxes in a Ferrers
diagram. First, we calculate the number of spanning trees. The technique we use to prove
this utilizes electrical networks. In fact, the first reference to spanning trees is in an article
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Fig. 1. The Ferrers graph and the Ferrers diagram associated with the partition (4, 4, 2), the dual partition
(3, 3, 2, 2) and the ab-word babba.

by Kirchhoff [16], thus the study of trees and the study of electrical networks share their
origin in the work of Kirchhoff. Second, when the two parts in the vertex partition have
the same cardinality we determine the number of Hamiltonian paths in the Ferrers graph.
This result is based upon the previous result and the proof is inspired by Joyal’s proof
of Cayley’s formula. Third, and most mysterious, we prove that the linear coefficient of
the chromatic polynomial of a Ferrers graph is given by the excedance set statistic of
permutations. Lastly, we compute the chromatic symmetric function, thus generating a
family of symmetric functions arising from Ferrers diagrams other than Schur functions.
It should be noted that our Ferrers graphs are not those appearing in [13].

Definition 1.1. Define a Ferrers graph to be a bipartite graph on the vertex partition
U = {u0, . . . , un} and V = {v0, . . . , vm} such that

• if (ui , vj ) is an edge, then so is (up, vq) for 0 ≤ p ≤ i and 0 ≤ q ≤ j ,
• (u0, vm) and (un, v0) are edges.

For a Ferrers graph G we have the associated partition λ = (λ0, λ1, . . . , λn), where λi

is the degree of the vertex ui . Similarly, we have the dual partition λ′ = (λ′0, λ′1, . . . , λ′m),
where λ′j is the degree of the vertex vj . The associated Ferrers diagram is the diagram
of boxes where we have a box in position (i, j) if and only if (ui , vj ) is an edge in the
Ferrers graph.

There is another natural way to index Ferrers graphs. Consider the Ferrers diagram
associated with the graph. Walk along the path on the border of the Ferrers diagram
starting at the lower right-hand corner of the box indexed by (n, 0) and ending at the
lower right-hand corner of the box indexed by (0,m). Label a horizontal step by b and a
vertical step by a. It is straightforward to see that the ab-words obtained this way are in
one to one correspondence with Ferrers graphs. This is essentially the same encoding as
in Exercise 7.59 in [19]. See Fig. 1 for an example of a Ferrers graph, its Ferrers diagram,
partition, dual partition and ab-word.

2. The Number of Spanning Trees

For a spanning tree T of a Ferrers graph G define the weight σ(T ) to be

σ(T ) =
n∏

p=0

x
degT (up)
p ·

m∏
q=0

y
degT (vq )
q .
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For a Ferrers graph G define 	(G) to be the sum 	(G) = ∑T σ(T ), where T ranges
over all spanning trees T of the Ferrers graph G. Also let τ(G) denote the number of
spanning trees of the graph G, that is, τ(G) = 	(G)x0=···=xn=y0=···=ym=1.

Theorem 2.1. Let G be the Ferrers graph corresponding to the partition λ and the
dual partition λ′. Then the sum of the weights of spanning trees T of the Ferrers graph
G is given by

	(G) = x0 · · · xn · y0 · · · ym ·
n∏

p=1

(y0 + · · · + yλp−1) ·
m∏

q=1

(x0 + · · · + xλ′q−1).

Hence the number of spanning trees of G is given by

τ(G) =
n∏

p=1

λp ·
m∏

q=1

λ′q .

Using the theory of electrical networks, originating with Kirchhoff [16] (for a more
accessible reference see [9]), we can deduce the following:

Proposition 2.2. Let H be a Ferrers graph and let G be the Ferrers graph obtained
from H by adding the edge (ui , vj ), where i, j ≥ 1. Then the ratio between 	(G) and
	(H) is given by

	(G)

	(H)
= x0 + · · · + xi−1 + xi

x0 + · · · + xi−1
· y0 + · · · + yj−1 + yj

y0 + · · · + yj−1
.

Proof. Let N be given by (x0 + · · · + xi ) · (y0 + · · · + yj ). View the Ferrers graph as
an electrical network where the edge (up, vq) is a resistor with resistance R(up, vq) =
(xp yq)

−1. Assign to each edge in the Ferrers graph G a currentw(up, vq) by the following
rule:

w(up, vq) =




−xp yq/N if p < i, q < j,
yq
∑i−1

p=0 xp/N if p = i, q < j,

xp
∑ j−1

q=0 yq/N if p < i, q = j,(
xi yj + yj

∑i−1
p=0 xp + xi

∑ j−1
q=0 yq

)
/N if p = i, q = j,

0 otherwise.

Moreover, by Ohm’s law we have the potential difference P(up, vq) = R(up, vp) ·
w(up, vq). It is then straightforward to verify thatw(up, vq) and P(up, vq) satisfy Kirch-
hoff’s two laws when a current of size 1 enters the vertex ui and leaves at vj . Also observe
that the vertices u0, . . . , ui−1 have the same potential and hence no current goes through
vertices vj+1, . . . , vm . Similarly, there is no current through the vertices ui+1, . . . , un .
Hence the current through the edge (ui , vj ) is given by

w(ui , vj ) =
xi yj + yj

∑i−1
p=0 xp + xi

∑ j−1
q=0 yq

N

=
N −

(∑i−1
p=0 xp

)
·
(∑ j−1

q=0 yq

)
N

.
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However, the current through the edge (ui , vj ) can also be determined by the theory of
electrical networks so

w(ui , vj ) =
∑

(ui ,vj )∈T

∏
e∈T R(e)−1∑

T

∏
e∈T R(e)−1

= 	(G)−	(H)
	(G)

,

where the sum in the denominator is over all spanning trees T of the Ferrers graph G
and the sum in the numerator is over all spanning trees containing the edge (ui , vj ). By
combining the last two identities the result follows.

Proof of Theorem 2.1. The proof is by induction on the number of edges. The smallest
Ferrers graph is the tree with n + m + 1 edges where (ui , vj ) is an edge if and only if
i · j = 0. This tree has weight x0 · · · xn · y0 · · · ym · xm

0 · yn
0 . The induction step adds one

edge at a time, and the result follows from Proposition 2.2.

As a corollary of Theorem 2.1 we obtain the classical result for the complete bipartite
graphs. For the history and different approaches of this corollary, see Exercise 5.30
in [19].

Corollary 2.3. For the complete bipartite graph Kn+1,m+1 the sum of the weights of
spanning trees T is given by

	(Kn+1,m+1) = x0 · · · xn · y0 · · · ym · (y0 + · · · + ym)
n · (x0 + · · · + xn)

m .

Thus the number of spanning trees of Kn+1,m+1 is given by τ(Kn+1,m+1) = (m + 1)n ·
(n + 1)m .

3. The Number of Hamiltonian Paths

We now turn our attention to enumerating the number of Hamiltonian (open) paths in a
Ferrers graph in the case when n = m, that is, when the two parts in the vertex partition
of the bipartite graph have the same cardinality. Observe that for convenience we identify
a Hamiltonian path with its reversal.

There are two important structures to consider. The first one is vertebrates:

Definition 3.1. Define a vertebrate (T, h, t) of a Ferrers graph as a spanning tree T
together with one vertex h from the set U called the head and one vertex t from the set
V called the tail. Call the set of vertices on the unique path from the head h to the tail t
the joints of the vertebrate.

Since there are λ′0 ways to choose a head and λ0 ways to choose a tail, we have as a
direct corollary to Theorem 2.1:
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Corollary 3.2. Let G be the Ferrers graph corresponding to the partition λ and the
dual partition λ′. Then the number of vertebrates of the Ferrers graph G is given by

n∏
p=0

λp ·
m∏

q=0

λ′q .

The other important structure we work with is permissible functions on the set U ∪V .
We call a function f : U ∪ V −→ U ∪ V permissible if, for all z ∈ U ∪ V , (z, f (z)) is
an edge in the associated Ferrers graph. Observe that the product in Corollary 3.2 also
enumerates the number of permissible functions on the Ferrers graph G.

For a function f let f k denote the kth power of the function under composition, that
is, f k = f ◦ · · · ◦ f . For a permissible function f call the set E( f ) =⋂k≥1 Im( f k) the
essential set of the function f . Observe that f restricts to a permissible permutation on
the set E( f ). Moreover, the essential set E( f ) intersects the sets U and V in equally
large subsets.

Using similar ideas of Joyal [15] we are able to prove for Ferrers graphs:

Theorem 3.3. Let G be a Ferrers graph with n = m, that is, each of the two parts in
the vertex partition have the same cardinality. Then the number of Hamiltonian paths
in G is equal to the square of the number of placements of n+1 rooks on the associated
Ferrers board.

Observe that the number of rook placements on a Ferrers board with n + 1 rooks is
λn · (λn−1 − 1) · · · (λ0 − n), where λ is the associated partition. Similarly, this is also
equal to λ′n · (λ′n−1 − 1) · · · (λ′0 − n), where λ′ is the dual partition.

Proof of Theorem 3.3. First observe that the number of rook placements squared is
equal to the number of permissible bijections π on the Ferrers graph G.

The proof of the statement is by induction on n. The induction basis is n = 0 which
is straightforward. Now the induction step.

Let S be a proper subset of U ∪ V such that S ∩ U and S ∩ V have equal size. We
claim that the number of vertebrates of the Ferrers graph G with the joints being the
set S is equal to the number of permissible functions on G having essential set S. By
the induction hypothesis we know that the number of Hamiltonian paths on G restricted
to the set S is equal to the number of permissible permutations on the set S. Now, a
vertebrate is a path such that each vertex in the path is the root of a tree. Similarly a
function is a permutation such that each entry in the permutation is the “root” of a “tree”.
For instance, for a root s in the essential set S of a permissible function f the tree is
the collection of vertices z such that f k(z) ∈ S implies there exists i ≤ k such that
f i (z) = s but f j (z) �∈ S for j < i . Hence the claim follows by changing a path on the
set S to a permissible permutation on the set S.

Now by summing over all S strictly contained in U ∪ V we have that the number of
vertebrates that are not paths is equal to the number of permissible functions that are
not permutations. Since the cardinalities of vertebrates and permissible functions are the
same we are done.
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4. The Chromatic Polynomial and the Linear Coefficient

Before we embark on deriving the chromatic polynomial we recall the excedance set
statistic. It was first studied in [11] and [12]. We follow their notation and instead of
speaking of the excedance set, we talk about the excedance word.

Define the excedance word of a permutation π = π1 · · ·πk+1 in Sk+1 to be the word
w = w1 · · ·wk where wi = a if πi ≤ i and wi = b if πi > i . For an ab-word w of
length k let [w] denote the number of permutations in Sk+1 with excedance word w.

Following [11] let Rm = {r = (r0, . . . , rm) : r0 = 1, ri+1 − ri ∈ {0, 1}}. Thus, each
vector r = (r0, . . . , rm) in Rm starts with r0 = 1 and increases by at most one at each
coordinate. Let h(r) be the number of indices i such that ri+1 = ri . We then have the
following result; see Theorem 6.3 of [11].

Theorem 4.1. Let w be an ab-word with exactly m b’s. That is, we can write w =
an0 ban1 b · · ·banm . Then the excedance set statistic [w] is given by

[w] =
∑
r∈Rm

(−1)h(r) · rn0+1
0 · rn1+1

1 · · · rnm+1
m .

For an ab-wordw, let χ(w) denote the chromatic polynomial in t of the Ferrers graph
G associated withw. Moreover, let |w| denote the length of the ab-wordw. Now we can
state the relationship between the linear coefficient of the chromatic polynomial and the
excedance set statistic.

Theorem 4.2. The linear coefficient of the chromatic polynomial χ(w) is given by
(−1)|w|+1 · [w].

It is straightforward to observe that χ(aw) = χ(wb) = (t − 1) · χ(w) and χ(1) =
t · (t − 1), where the 1 in χ(1) denotes the empty word.

For a vector r in the set Rm and 1 ≤ i ≤ m define fi (r) = fi by fi = t − ri−1 if
ri − ri−1 = 1 and fi = ri−1 otherwise.

Theorem 4.3. Letw be an ab-word with exactly m b’s, that is,w = an0 ban1 b · · ·banm .
Then the chromatic polynomial χ(w) of the associated Ferrers graph G is given by

χ(w) =
∑
r∈Rm

t · (t − r0)
n0 · f1 · (t − r1)

n1 · f2 · · · fm−1 · (t − rm−1)
nm−1 · fm · (t − rm)

nm+1.

Proof. For a proper coloring of the graph G let ri be the number of distinct colors
appearing on the i + 1 nodes v0 through vi . Let us determine how many colorings there
are of the graph with a given vector r = (r0, . . . , rm).

The node v0 can be colored in t ways. If ri − ri−1 = 1, then the node vi is colored
with a color not used before, and there are t − ri−1 such colors. If ri+1 − ri = 0, then
the node is colored with an “old” color, and there are ri−1 such colors. In both cases we
have fi possibilities.

For i ≤ m − 1 observe that there are ni u-nodes that are connected exactly to the
nodes v0, . . . , vi . There are (t − ri )

ni ways to color these ni nodes, since they all have
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to avoid the ri colors of the nodes v0, . . . , vi . Finally, there are nm + 1 u-nodes that are
connected to all the v-nodes v0, . . . , vm . Similarly, there are (t − rm)

nm+1 ways to color
these nodes. Hence there are

t · f1 · f2 · · · fm · (t − r0)
n0 · · · (t − rm−1)

nm−1 · (t − rm)
nm+1

ways to color the graph G with a given r-vector. Now summing over all possible r-vectors
the result follows.

We now prove the main result:

Proof of Theorem 4.2. To obtain the linear coefficient inχ(w) divide by t and set t = 0.
Observe that fi evaluated at t = 0 is equal to ri−1 with a sign change if ri − ri−1 = 1.
The number of such sign changes is m− h(r). Moreover, we also obtain n0+n1+· · ·+
nm + 1 sign changes from the other factors. Hence the total number of sign changes is
m − h(r)+ n0 + n1 + · · · + nm + 1 = |w| − h(r)+ 1.

The remainder of the term corresponding to r can now be written as rn0+1
0 · rn1+1

1 · · ·
rnm+1

m , and the result follows by Theorem 4.1.

There is one important special case of Theorem 4.3:

Proposition 4.4. The chromatic polynomial of the complete bipartite graph Kn+1,m+1

is given by

χ(bman) =
m+1∑
k=1

S(m + 1, k) · t · (t − 1) · · · (t − k + 1) · (t − k)n+1,

where S(m, k) denotes the Stirling number of the second kind.

Proof. Begin to color the vertices v0, v1, . . . , vm with exactly k colors where 1 ≤ k ≤
m + 1. This can be done in S(m + 1, k) · t · (t − 1) · · · (t − k + 1) ways. There are
(t − k)n+1 ways to color the remaining vertices u0, u1, . . . , un .

The linear coefficient of the chromatic polynomial (up to a sign) also has the inter-
pretation of being the number of acyclic orientations of the graph with a unique given
sink [14]. Also observe that it is enough to note that there are no directed 4-cycles in an
orientation of the edges in a Ferrers graph to guarantee that the orientation is acyclic.
Expressing this in terms of the associated Ferrers diagram we have:

Corollary 4.5. The excedance set statistic [w] is the number colorings of the boxes in
the Ferrers diagram associated to the ab-word w with colors red and blue such that

(i) there are no four boxes (p, r), (p, s), (q, r), (q, s) such that (p, r) and (q, s)
are colored red and (p, s) and (q, r) are colored blue,

(ii) there is a unique given row where all the boxes are colored red, and
(iii) there is no column where all the boxes are colored blue.
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Fig. 2. A Ferrers diagram with colored boxes, and its constituents.

5. The Chromatic Symmetric Function

A natural generalization of the chromatic polynomial, known as the chromatic symmetric
function was defined in [18], and it is natural to ask whether we can explicitly compute
these for Ferrers graphs. This would give us a set of symmetric functions other than the
Schur functions that can be computed from Ferrers diagrams.

Observe that unlike the Schur functions, the chromatic symmetric functions of Ferrers
graphs will not form a basis for the symmetric functions as the chromatic symmetric
function of the Ferrers graph corresponding to the partition λ and λ′ will be identical.

Before we continue we need to define the constitution of a Ferrers diagram whose
boxes have been colored red and blue. First choose a red box. Score through that row and
column. For every red box with a score going through it in one direction score through it
in the other direction. Repeat until all the red boxes either have two scores or no scores
through them. Extract all the boxes with two scores in them. Choose another red box, and
repeat until none remain. The list of extractions is the constitution and each extraction
is called a constituent (see Fig. 2).

In addition, let RBλ be the set of all red–blue colorings of the Ferrers diagram corre-
sponding to the partition λ (without the restriction of Corollary 4.5). For r ∈ RBλ let |r |
be the number of constituents of r and let |r |red be the number of boxes in r colored red.

Theorem 5.1. Let G be the Ferrers graph corresponding to the partition λ. Then the
chromatic symmetric function XG in terms of the power sum symmetric functions pµ is
given by

XG =
∑

r∈RBλ

(−1)|r |red · pr1 · pr2 · · · pr|r | · pb
1,

where ri is the number of rows plus the number of columns in the i th constituent of r ,
1 ≤ i ≤ |r |, and b is the number of rows plus the number of columns of r that contain
no red boxes.

Proof. Recall that for a graph G with a set of edges E the definition of the chromatic
symmetric function in terms of the power sum basis is [18, Theorem 2.5]

XG =
∑
S⊆E

(−1)|S| p|C0| · · · p|Cm |,
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where |Ci | is the number of vertices in each connected component Ci , 0 ≤ i ≤ m, of G
with the edges not in S removed.

Now observe that for a Ferrers graph G with edge set E there is an natural bijection
between S ⊆ E and red–blue colorings r ∈ RBλ of the Ferrers diagram associated with
λ, given by

(ui , vj ) ∈ S ⇔ (i, j) is colored red in r.

This gives us the index of summation and the exponent of−1 in our formula. To complete
the proof note the constituents of r yield precisely the connected components of G
containing more than one vertex, and if the i th row (column) of r contains only blue
boxes, then ui (vi ) is not connected to any other vertex in G.

A more specific formula can be found for the two extreme cases of Ferrers graphs.
First the case when the Ferrers graph is a tree.

Corollary 5.2. Let G be the Ferrers graph corresponding to the partition (m + 1)1n .
Then the chromatic symmetric function XG in terms of the power sum symmetric functions
pµ is given by

XG =
m+n∑
i=0

(−1)i
((∑

j+k=i

(
m

j

)(
n

k

)
pj+1 pk+1 pm+n−i

1

)
−
(

m + n

i

)
pi+2 pm+n−i

1

)
.

Proof. Observe that in the case where the Ferrers diagram associated with λ is a hook,
for r ∈ RBλ if (0, 0) is blue, then we obtain the function

m+n∑
i=0

(−1)i
∑

j+k=i

(
m

j

)(
n

k

)
pj+1 pk+1 pm+n−i

1 ,

whereas if it is red, then we obtain the function

m+n+1∑
i=1

(−1)i
(

m + n

i − 1

)
pi+1 pm+n+1−i

1 .

The other extreme case is the complete bipartite graph Kn,m , which is the Ferrers
graph associated with the partition mn . A change of basis is required for the simplest
description of the chromatic symmetric function.

Corollary 5.3. The chromatic symmetric function X Kn,m in terms of the monomial sym-
metric functions mµ is given by

X Kn,m =
∑
σ∈�n

∑
τ∈�m

(r1! r2! · · ·) · mµ(σ,τ),

where �n is the collection of all set partitions of {1, . . . , n}, µ(σ, τ) is the partition
determined by the block sizes of σ and τ , and ri is the multiplicity of i in µ(σ, τ).
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Proof. Recall that a stable partition of the vertices of a graph G is a partition of the
vertices such that each block is totally disconnected. Then Proposition 2.4 in [18] states

XG =
∑
π

(r1! r2! · · ·)mµ(π),

where the sum ranges over all stable partitions π of the graph G. The result follows
by noting that in the complete bipartite graph Kn,m , every block in a stable partition
either lies entirely in the n vertices {u0, . . . , un−1} or lies entirely in the m vertices
{v0, . . . , vm−1}.

The symmetric functions appearing in Corollary 5.3 have the following explicit ex-
ponential generating function, generalizing Exercise 5.6 in [19]:

∑
n,m≥0

X Kn,m

sn

n!

tm

m!
=
∏
i≥1

(esxi + etxi − 1),

where we view the symmetric functions in terms of the variables {xi }i≥1.
Lastly, note that to recover the earlier chromatic polynomial we set x1 = · · · = xt = 1

and all other xi = 0.

6. Concluding Remarks

Is it possible to obtain an expression for the Tutte polynomial of a Ferrers graph, that
would both encode the number of spanning trees in Theorem 2.1 and the chromatic
polynomial in Theorem 4.3? For the enumerative results in this paper it is natural to ask
for combinatorial proofs. From a bijection given in [17], a bijective proof for Theorem 2.1
can be obtained via some modifications. In [10] bijective proofs for Theorems 2.1 and 3.3
have been derived using box labeling. However, it would also be desirable to have a
bijective proof for Corollary 4.5.

The excedance set statistic [w] satisfies the recursion [ubav] = [uabv] + [uav] +
[ubv] where u and v are two ab-words. Is there a similar recursion for the chromatic
polynomial? A partial answer to this question is the following proposition, whose proof
we omit.

Proposition 6.1. The chromatic polynomial χ(w) of the associated Ferrers graph sat-
isfies the recursion:

χ(wbak−1) = t · χ(wak−1)+
∑

0≤i≤k−1

(−1)k−i ·
(

k

i

)
· χ(wai ).

On the excedance statistic level this recursion corresponds to [wbak−1] =∑0≤i≤k−1

(k
i

) ·
[wai ]; see Proposition 2.5 of [11]. Moreover, can this proposition be extended to the
chromatic symmetric function?

Another question related to the chromatic polynomial arises from the following ob-
servation. A Ferrers graph G can be equivalently viewed as an (n+m+ 2)-dimensional
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hyperplane arrangement given by

xi = yj if and only if (ui , vj ) is an edge in G.

Thus the chromatic polynomial of the Ferrers graph G is also the characteristic poly-
nomial of the associated hyperplane arrangement, see [14]. Hence, can a combinatorial
expression be found for the number of acyclic orientations of the Ferrers graph, or
equivalently for the number of regions of the associated hyperplane arrangement?

Finally, one can define the Ferrers graph associated with a skew partition λ/µ. Do
any of the results in this paper extend naturally to skew partitions?
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