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We use the theory of colored species 1o prove the plethystic Lagrange inversion
formula and infinite variated Good’s inversion formula. These inversion formulas
are shown to be equivalent to transfer formulas in the infinite variated umbral
calculus. €' 1994 Academic Press, Inc.

1. INTRODUCTION

Recently, two similar generalizations of Joyal’s theory of species in
several variables were independently introduced. They both develop set-
theoretical interpretations of operations with formal power series in an
infinite number of variables. One of them is the theory of compositionals,
introduced by Chen [C], which interprets the operations of formal power
series in the variables x,, x,, x5, .., in terms of operations with composi-
tions. A composition is a vector with an infinite number of entries, where
each entry is a finite set. Polya’s plethystic composition, and its set-theoretical
interpretation, is obtained as particular instance of the operation of sub-
stitution of a summable family of power series into a power series. Chen
developed a plethystic umbral calculas in this combinatorial setting.

The other theory, introduced by Mendez and Nava [M-N], is more
general. It studies formal power series in the variables {x;},.,, where the
elements of the index set 7 are called colors. The theory explains operations
of these formal power series in terms of operations with colored sets.
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A colored set is a finite set, where each element has a color from the
set I assigned to it. A general operation of substitution with power series
is defined. Endowing the set / with a structure of a c-monoid, which is
defined below, one can introduce a general notion of plethysm, and its
combinatorial interpretation. Polya’s plethysm is a special case of the
general plethysm. To see this fact, let the c-monoid be positive integers with
multiplication.

Using this framework we generalize Good’s multivariated inversion
formula [Go] to the infinite variated case, Theorem 3. Our proof is based on
the construction of an involution over a set of colored functions enriched
with a system of colored species. Previously Gessel presented a bijective
proof of a Good’s original multivariate formula [Ge].

A Lagrange inversion formula, Theorem 1, for the generalized plethysm
can be obtained as a particular case of our generalization of Good’s inver-
sion formula, Theorem 3. A special case of this Lagrange inversion formula
for Polya’s plethysm was previously proved by Labelle [Lab2] using a
procedure called lifting. However, we present a very simple combinatorial
proof of the general plethystic Lagrange inversion formula, as it is of inde-
pendent combinatorial interest. This proof is based on the enumeration of
plethystic enriched forests using inclusion—exclusion over sets of plethystic
enriched functions. The proof resembles Labelle’s proof of the Lagrange
inversion formula in one variable [Labl].

We believe that Chen’s plethystic umbral calculus can be completely
restated in the more general context of colorations and the generalized
plethysm. In particular, by restating Chen’s plethystic transfer formula we
prove in Theorem 7 the equivalence between the plethystic transfer formula
and the plethystic Lagrange inversion formula. In a similar way we prove
in Theorem 5 a transfer formula which is equivalent to our generalized
version of Good’s inversion formula.

Recently Gessel and Labelle have proved the plethystic Lagrange inver-
sion formula for Polya’s plethysm using ordinary species [ Ge-Lab]. Their
method uses the cycle indicator series of a species.

We are pleased to acknowledge Gian-Carlo Rota who brought us together
and inspired us in the the pursuit of studying combinatorics.

2. ForMAL POWER SERIES AND COLORED SETS
Let 7 be a set, possible infinite.

DEFINITION 2.1. A mudti index n is a vector whose entries are non-
negative integers whose sum is finite and the entries are indexed by . That
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is n=(n,),_, where n,e N. Define the base multi-indices by e;=(5;.);c »
for je 7.

Note that any multi-index n can be written as a linear combination of the
base multi-indices

n=>3 n-e,
e

where there are only a finite number of nonzero terms in the sum. For a
finite subset /=7, define

e, =y e.
il

Let & be a field of characteristic 0. We consider formal power series in
the variables (x;),_,. A power series is denoted with f(x). To be able to
write readable formulas we introduce the following notations:

n=(n),.s
n!=[] n!
ied
X=(X)cq
x"= H X7
ied
n n;
(0)-1 ()
(n), = n (n),

Thus a formal power series can be written as an exponential series
xll
X)= —.
fx)=Tau

The sum of two power series, f(x) =3, a,(x"/n!) and g(x) =3, b,(x"/n!),
is defined componentwise. That is

(f+8)x)=Y (a,+b,) ’;‘]7
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The product of two power series f(x) and g(x) is

(f-8)x)=Y c, f;,

where

n
Cy= ayb, -
0§k$n<k) . ‘

DEerINITION 2.2. A collection power series g(x) is a set of formal power
series indexed by the set 7. That is

g8(x)=(g:(x));c »-

A summable collection g(x) is a collection such that for every multi-index
n the coefficient [x"/n!] g,(x) is nonzero for only a finite number i 7.

DerFINITION 2.3, Let f(x) be a formal power series and g(x) be a
summable collection formal power series, such that g;(x) has no constant
coefficient. Define the composition f-g as

(fo8)x)=f((g:i(X));c )

Observe that x"og =17, , g,(x)" We also write this expression as g".

DerFmNITION 24, A colored set (E, f) is a set £ with a function
[ E->» 7. The color of an element ae E is the value f(a). The colored set
(E, f) is finite if £ is a finite set. The cardinality of a finite colored set
{E, /) is a multi-index card(E, f)=n such that

n,=[{aeE: fla)=i}l.

If card(E, f) =n we say that (E, /) is an n set. When we need to speak
about a generic colored set of cardinatlity n, we write n for this generic set.

3. COLORED SPECIES

We introduce now the theory of colored species. This theory was
developed in [M-N]. We only give a short sketch of definitions and main
results. The reader interested in this subject is referred to [M-N].

Let B be the category of finite sets and bijections. Recall that a species
is a functor from B to B. Similarly we can define the category of colored
sets.
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DErFINITION 3.1. Let B, be the category of finite colored sets and

bijections, which preserve color. A colored species M is functor from B,
to B.

Define the generating function of colored species M to be
xn
card(M; x)=) |M[n]| g

where M[n] is the species applied to a generic n set.
For ie 7 define the colored species X; by

{E} if card(E, f)=e,
0] otherwise '

X f)] ={

Observe that card(X;; x) = x,.
Define sum and product of two colored species by

(M + N)UE, )]=MUE f)]w NI(E f)]
(M-NUENI= U MUE, fle)IxNUEs, fla)]-

Ei+ E=F

For a colored species M and i€ 7 define the colored species M'") by

M'OLE, f)1=M[(Ew {x} )],

where * is a ghost element of color i That is, we extend f'such that f(x) =
Moreover let

M- =X, M,

That means that we mark an element of color / in the underlying set.

A colored partition of a colored set (E, f) is a partition © of the set E,
with function g: n — 7. Let II[(E, f)] be the set of all colored partitions
of (E, f).

DEFINITION 3.2. A collection of colored species M is a set of colored
species indexed by the set 7. That is,

M: (Ml’)ie.ﬂf‘

A summable collection M is a collection such that for every colored set
(E, 1) the set M,{(E, f)] is nonempty for only a finite number of ie 7.

Observe that if M is a summable collection of colored species; then
(card(M;; x)),. » is a summable collection of power series.
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Let M be a colored species and let N be a summable collection of
colored species, such that N,[(ZF]1=J for all ie 7. Define the divided
power I',(N) as

(N(N)(E, f)]= U [T N [(B, f15)1.

(n, g)e IT[(E, )], card(n,g) =k Ben

Define the composition M- N by

(M-N)(E f)]= U M[(m, g)1% [] Nen (B, f15)]

(m, gye IT(E, /)] Ben

Observe that the summability condition of the collection N implies that the
two sets (I, (N))[(E, f)] and (M-N)[(E, f}] are finite.
Note the following identity:

[T xpeN=T]] ~v
ied ied

We write the above expression as N®,
Now we can show the relationship between operations on colored
species and operations on the respective generating functions.

ProrosITION 3.1.

card(M + N; x) = card(M; x) + card(N; x)
card(M - N; x) = card(M; x) - card(N; x)

card(M'?; x) = ;x_ card(M; x)

. ¢
card(M *; x) = x,— card(M; x)
Ox;

card((M > N; x) = (card(M; x) o ((card(N;; x)), 5 ))(x)

k

card(I", (N); x) = ("

e (@ 0 ) ()

1

=4 [T card(¥; x)*.

ied
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4, CoLorReD FuncTIiONs AND COLORED TREES

Let M=(M,),.» be a collection species, not necessarily a summable
collection.

DEFINITION 4.1. An M-enriched function ¢ from (E, f) to (F,g) is a
function ¢ from E to F such that for all b€ F the colored set

({aeE| ¢(a)=b}, f)=(7"(b), f)

is enriched with an M, structure.

LemMma 4.1. Let (F,g) be a fixed colored set. The set of structures
defined on the colored set (E, f) by

(H Mg.b>) [(E, /)]

befF

is isomorphic to the set of M-enriched functions from (E, f) to (F, g).

DEFINITION 4.2. A M-enriched tree (forest) on an n set (E, f) is a tree
(forest) on E such that for every node ae E we put an M, structure on
its set of sons.

Let A‘ ) be the colored species of M-enriched colored trees with the root
of color 7. Let A be the collection (44),. -

PROPOSITION 4.2. The collection Ay, is a summable collection of colored
species and the colored species AY) fulfills the functional equation

Aq=X,-(M;°Ag).

Proof. Look at the trees A;}[(E, f)]. The root of the trees has color ¢
and the root lies in the colored set (E, /). But the colored set (E, /) has
only a finite number of colors. Hence A:Q[(E, /)] will only be nonempty
for a finite number of ie 7. Thus the collection A g is summable.

The colored species Af\—'; puts an enriched root of color i on a colored set.
Thus (M- (KM),e #) buts a colored partition on a set, where each block of
color i receives the structure A(", and the set of blocks receives an M,
structure. But note that 4 ;‘) 15 a colored tree. Moreover this colored tree
has the root of color i. Since every block contains a unique root, we can
view it as putting the M, structure on the roots of all the trees. Thus

(M ioKM) is a colored forest with an M, structure on the roots.
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N
(o}
Mj )
{ i
j 4 o
O
’
M i) S {)
M, M,
Fic. 1. An example of an M-enriched contraction.

Now by multiplying with X, we start by selecting an element of color /.
Thus in order to get the set of structures the colored species X, - (M-Ag)
describes, join this selected element to the roots of the forest. Thus we have

a M-enriched colored tree, and the equation follows. [

The implicit species theorem [M-N] implies that the equation system
Y =X .(M-Y) has a unique solution Y, which is summable.

Define the colored species Endg by letting Endg[(E, f)] be all
M-enriched colored functions from the colored set (E, f) to itself. Such a
colored function is called an M-enriched colored endofunction.

An M-enriched contraction on a colored set (E, f) is and M-enriched
function ¢ such that there exists a node a € E, such that for all &€ E there
exists a positive integer k such that for all » >k we have ¢"(h) = a. Observe
that ¢{a) = a. We call the vertex a the attracting point. The contraction has
depth m if ¢"(b)=a for all be E.

LeMMA 4.3, The colored species of Me-enriched contractions with the
attracting point of color i is described by

X, (MPoAg).

Proof. The colored species X; chooses the attracting point a of color i
Then the set (E— {a}, fl¢ () has the structure of an M-enriched colored
forest. But the roots and the attracting vertex ¢ has an M, structure on
them. This is equivalent to putting an M) structure on the roots. |

LEMMA 4.4. The colored species M is naturally isomorphic to
Me-enriched contractions ¢, which has depth 1, attracting vertex of color i and
no structure put on ¢~ '(b) if b is not the attracting vertex.
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FIG. 2. An example of an M-enriched contraction of depth 1 without enriched leaves.

Let ¢ be a colored function from the colored set (E, f|,) to the colored
set (R E, f). An element a in the set E is called periodic if there exists
m, a positive integer such that ¢™(a)=a.

DerINITION 4.3. Define the species .4°% of nonperiodic M-enriched
colored functions as follows: let A % [(E, f)] be the set of all M-enriched
colored functions ¢ from the colored set (E, f) to the colored set
(E, f) wk, such that there is no periodic element in the colored set (E, f).

LEMMA 4.5. Let (R E, f) be an n set and assume that (R, f|g) is ak
set. The set of all M-enriched colored functions from (E, f|z) to (RU E, f)
is described by

(N % Endg)(E, f1£)].

LEMMA 4.6. For a collection of colored species M we have that

(F(Ag))[n]l = (:) QA [n— k]

Proof. (Fk(KM))[n] describes the set of forest on a n set such that
there are k; roots of color i. The set of roots R can be chosen in (}) possible
ways. Let E be the complemented set. Now the forest can be considered a
nonperiodic M-enriched function from (E, f|,) to (E, f|,) w [k]. But the
number of such functions are |4} [n—k]|, and the lemma follows. |

5. C-MonNoIDS

In the following section we study how Good'’s inversion formula specializes
to plethystic Lagrange’s inversion formula. To do so we need to define the
plethystic composition of two colored species and of two formal power
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series. We begin defining ¢-monoids, and from this concept we can define
the general plethysm.

DeFmNITION S5.1. A c-monoid (7,-,1) is a set 7 with an associative
binary operation - with identity element 1€ .4 (that is, a monoid) which
satisfies the additional properties:

(1) Foralli je7 ,zf i-j=1 then i=j=1 (indivisibility of the identity).
(2) Foralli j,jeZ,ifi-j=i-j' then j=j (left cancellation law).

ExaMpLE 5.1. The c¢-monoid of natural integers under addition. Let
(7,-,1)=(N, +,0). Clearly this is a ¢-monoid.

ExaMpLE 5.2. The c-monoid of positive integers under multiplication.
Let (7,-,1)=(P, -, 1). Observe that this c-monoid is isomorphic to an
infinite countable direct product of the c-monoid in the previous example.

ExampLE 5.3. The c-monoid of words over an ailphabet. Let 4 be an
alphabet. Denote 4* to be the set of all words with letters in A. Then
(A*, -, ¢) is a c-monoid, where - is a concatenation and ¢ is the empty word.

DeFNITION 5.2. If (F,-,1) is a c-monoid we define the divisibility
relation on 7 as the following: for i, je 7 we have that i< if and only
if there is k€ 7 such that j=i-k.

Note that /< j implies that k-i<k-j.

ExaMpPLE 54. In the first example above, the divisibility relation is the
ordinary linear order on nonnegative integers. In the second example, the
positive integer / is less than or equal to the positive integer j, if i divides j.
In the last example the word / is less than or equal to the word j, if i is a
prefix of j.

LemMa 5.1, Let (F,-,1) be a c-monoid, and let < be the induced
divisibility relation 7. Then:

(1) (7, <) is a partial order on F with minimal element 1.

(2) For each i€J, the dual order ideal F,={jeT :i<j}
isomorphic to J via the function ¢;: T — T, given by ¢,(j)=1i-j. In
particular, if T # {1} then T is infinite.

DEerINITION 5.3. A finite factorization monoid (FF c-monoid)(7, -, 1)
is a monoid where every element has only a finite number of factorizations
into different elements.
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LEMMA 5.2. Let (7,-,1) be a c-monoid, and let < be the induced
divisibility relation 7. Then the condition that (7, -, 1) is a finite factoriza-
tion monoid is equivalent to that the partial order (7, <) is locally finite.

6. PLETHYSTIC COMPOSITION OF FORMAL POWER SERIES

Previously, we defined composition between a power series and a
summable collection of power series. We also made a similar definition for
colored species. If the index set J has the structure of a ¢-monoid, we are
now able to define the plethystic composition between two power series.
Likewise we define the plethystic composition between two colored species.

DEerINITION 6.1. Define the Verschiebung operator ¥; on a multi-index
by 7i(e;)=e, ; and extend by linearity.

DEerINITION 6.2. Define the Frobenius operator %; on formal power
series by

Fi(g((x));c 5 ) =8((x; });c 5 )s
where ie 7.

Note that & is an injective algebra homomorphism on formal power series.
Moreover we have the fact

F(x") = x Yitn),

DerINITION 6.3. Let f(x) and g(x) be formal power series, such that
g(x) has no constant coeffcient. Define the plethystic composition f* g as

(f*8)(x)=f((F(8(x)));c 5).

Let g(x) be the collection of power series defined by g(x) = (% (g(x))).. »-
Since g(x) do not have a constant term, the collection g(x) is summable.
Observe now that

(f*2)x)=(/~g)(x)

This identity connects the two different compositions.

ExaMpPLE 6.1. For the c-monoid of positive integers and multiplication,
(P, -, 1), the plethystic composition is the classical plethysm defined by
Polya

(f* g)(xla X2, X3, )

=f(g(xl’ Xz, X3, )5 g(xZ, X4, x65 '")’ g(X3, x6’ x9’ '“)’ )
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ExaMpPLE 6.2. For the c¢-monoid of natural integers and addition,
(N, +,0), the plethystic composition we obtain is the shift-plethysm

(f* g)(x(]v xl’ xzs )

=f(g(x0, Xy X3, )s g(xh X2 X3, ), g(xz, X3, X4 )7 )

ExampLE 6.3. The c-monoid (A4*, -, ¢) leads to an infinite family of
plethysm, one for each cardinality of the alphabet A,

(.f* g)((xw)weA‘) :,f((g((xw/w)weA‘))w'EA)-

7. PLETHYSTIC COMPOSITION OF COLORED SPECIES

Define the Frobenius operator % on colored species by the identity

M[(E, g)] if i-gla)=f(a) forall aekE
%] otherwise.

(Z (M), )] ={

The Frobenius operator on colored species has the following combinatorial
interpretation. Each structure in % (M)[(E, /)] is obtained from a unique
structure in M[(E, f)] by multiplying the colors of the underlying set
(E, f) on the left by i.

We can rewrite this as

(ZMWIUE, i-f)]=MUE, )]
Directly we see that
F (M + N)=F(M)+ F(N),
F(M-N)=F(M)-F(N).

Moreover, a plethystic partition of a colored set (E, f) is a partition = of
the set E, with a function g : # — .7 such that for all Ben and for all ec B

g(B) < fle).

Let I1,[(E, /)] be the set of all plethystic partitions of (E, f).
Let M and N be two colored species, such that N[ 1= J. Define the
divided power y,(N) as

(1 N)E £)]= U [T s (NL(B, f15)].

(m.g)e IL,TLE )], cardin, g)=k Ben
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Define the plethystic composition M * N by

(M x N)L(E f)]= U M(n, )% [T Zm(NL(B, f15)].

(n. ghe L(E ] Ben

Let N be the collection of colored species defined by N = (Z(N))ics-
Since N[ 1=, the collection N will be summable. It is now true that

M+ N=M-N.
Moreover, it is also true that
(N)= Fk(N)'
PropoOSITION 7.1.

card(#(M); x) = Z(card(M; x})
card((M = N); x) = (card(M; x) * card(N; x) )(x)

k
card(y, (N); x)= (% * card(N; x)) (x)

1
= [T #(card(N; x))*.
k' ie

8. COLORED SPECIES OF PERMUTATIONS
Let S be the species of permutations on elements of color 1. Let S, be the

species of nonempty permutations on elements of color 1. Similarly define
L, L, as linear orders on elements of color 1. Their generating functions are

card(S; x)=card(L; x) =

1—x,

1
card(S,; x)=card(L,; x) = =
1—x, 1—x,

From [J] comes the following equipotent identity

LeEMMA 8.1.
So=X,-S
Proof. We have that

So=Lo=X,-L=X,-5. |
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Proof. 1t is easy to construct a natural bijection to see that the
following is true:

Seg=X,"S+X,-S".
This can be written as
Seg=X,-S+X,-§°
=X;-S+X,-§°
=(X,-5)"

from which the result follows. |}

DerINITION 8.1, Let 7 be a subset of 7. Define the colored species S’ by

s'=T] #(S).

iel

Similarly, for a finite subset 7 of 7, define the colored species S; and X,
by

So=[1 #(So),

iel
X,=[1x.
iel

The set of structures S'[(E, /)] consists of permutations on each fiber
S (i), where i€ I Recall that a permutation might be empty. Similarly the
set of structures S{[(E, f)] consists of nonempty permutations on each
fiber f/~'(i), where ie I Observe then that the colored species S)-$7 ~/
puts a permutation on each fiber / ~'(i) for ie 4 and demands that there
are elements with the colors of the set .

LEMMA 8.2. The following equipotent identity is true:
Si-§7'=Xx,.87.
Proof. Directly we have that

So- 87 =TT #(So)- [ #(S)

iel ied —1
=[] #(X,-8)- [1 #(S)
iel e —1
=[1Xx:- [T #(9)
iel ied

=XI'S‘9.. l
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9. PLETHYSTIC FUNCTIONS AND PLETHYSTIC TREES
Let M be a colored species.

DEFINITION 9.1. An M-enriched plethystic function/contraction/tree/
forest is an M-enriched function/contraction/tree/forest, where the collection
M is defined by

=(F (M)

Observe that an M-enriched plethystic function ¢ from the colored set
(E, /') to the colored set (F, g) fulfills f(a) = g(#(a)) for all ae E.

Note that if b is a node in a plethystic tree on a colored set (E, f), and
if a is the father of the node b, then f(a) < f(b). This is the same definition
of plethystic trees as in [M-N].

We have three important colored species to define.

1. Let A4,, be the colored species of M-enriched plethystic trees with
the root of color 1. That is, 4,,= A‘K‘d’. Observe that (F(Ay));csr =Ax

2. Let End,, be the colored species of M-enriched plethystic endo-
functions. That is, End,, = End .

3. Let.#"% be the colored species of nonperiodic M-enriched plethystic
functions. That is, A%, = A4"%.

Thus we can rewrite Lemma 4.1 to the following.

LEMMA 9.1. Let (E, f) and (F,g) be two colored sets. The set of all
M-enriched plethystic functions from (E, f) to (F, g) is described by

(1 Z M)) E )]

beF
ExampLE 9.1. Let the underlying c-monoid be positive integers and

multiplication. An M-enriched plethystic tree, where M is a colored species,
is an enriched plethystic tree as defined in [C].

Directly from Proposition 4.2 we obtain the following lemma.

LEMMA 9.2,  The colored species A, fulfills the functional equation
Ay=X,-(Mx* A,)

Lemmas 4.3 and 4.4 translate into
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Fa(M) F M)
a ab) ab Fba(M)
o>———o ba)
(o]
Fy(M
M M b\ b\ Fp(M)
€ € (e} (o]
o o
bab
a o
A
%b) F (M) bab™)
Fpb(M)

Fig. 3. An example of an M-enriched plethystic tree over the c-monoid ({a, b}*, -, ).

LEMMA 9.3. The colored species of M-enriched contractions with the
attracting point of color 1 is described by

X, (M'V % 4,,).

LemMma 94.  The colored species M=V = X, - M’V is naturally isomorphic
to M-enriched contractions ¢, which has depth 1, attracting vertex of color 1
and no structure put on ¢ ~'(b) if b is not the attracting vertex.

Let ¢ be a plethystic function from the colored set (£, f|z) to to the
colored set (R W E, f). Let a be a periodic element of color i. Since f(a) 2
flda)= --- = f(¢*(a))= --- = f(¢™(a)) we know that all nodes in the
same cycle as a have the color i.

LEMMA 9.5. The colored species End ,, is naturally isomorphic to

57 * (X, (M % Ayy)).

LEMMA 9.6. Let (RUE, f) be an n set and assume that (R, f|g) is a
k set. The set of all M-enriched plethystic functions from (E, f|g) to
(R E, [) is described by

(A%, - Endy)[(E, f12)].
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. O .......... O E R
AN A
20 30 60 90 | !
.................................... AN\.....i 0 o}
40 120 180 28
O=—0 (o] 14
4 “'4°<'2 ® 2 14\0 7
o o—0" 720
190 o 2 7A/
BO O~—=0

FiG. 4. An example of a plethystic function with marked contractions of depth 1.

10. LAGRANGE INVERSION FORMULA

Let R w E be a colored n set and R a colored k set. Let J={i:n,#0},
which is a finite set. Moreover, in this section, let M' =M Yand M* =M V.

ProOPOSITION 10.1. Let I be a subset of J. Then there is a natural
bijection berween the set of M-enriched plethystic functions from E to R v E
such that there exists a cyclic point of color i for all ie I, and the set

(H FM My ] %(M"o) [(E )]

iel ie ¥ —1

Proof. Observe that

[T#FM MmN [T F(M™)

iel ied —1
=[1 &) T] ZM Y [T F(M).
ief iel ied -1

By Lemma 9.4, (M °) chooses an M-enriched contraction of depth 1 with
the attracting vertex of color i. Thus

[T#M")

iel
chooses for each ie/ an attracting vertex of color i, and to each of them
a contraction of depth 1. Let C be the set of attracting vertices, and let E,
be the underlying set on which these contractions are built. Hence we have
chosen an M-enriched plethystic function from the colored set (£, fl,) to
the colored set (C, f] ).

607 103 2-8
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The cardinality of (R w E)— C is n—e,. Hence the colored species

[T # M T FMm)

iel ied —1
chooses an M-enriched plethystic function from the colored set (£,, f1.,)
to the colored set ((Rw E)—C, f| ., £_c)» Where E;=E—E,.

Recall that E=E, + E,; thus by joining these two plethystic functions
we get an M-enriched plethystic function from the colored set (E, /) to
the colored set (R w E, f). Moreover we know that this function has an
attracting vertex of color / for each ie I

The above set of structures can be written as

('/V:/!'n F (X (M *AM))'EndM> L(E flg)].

iel

The first factor describes the structure of elements that image of repeated
applications of the functions will be in R. The second part is all the
contractions which have the attracting vertices of the given colors. The
third part is the structure on those elements that will be in a cycle after
repeated applications of the function.

The above colored species can be written as

AT Z(X, - (M x 4,,))-End,,

ief
=N (X% (X (M % 4,0)) (87 % (X (- (M % 4,)))
=A% (X, -ST) * (X, - (M % 4,,))).
Since
X,-87=58.87
we conclude that the set of structures above is equipotent to
(N e ((So- ST 71+ (X, - (M * A)))UE, f1g)]

But this is the structure of enriched plethystic functions such that there will
be at least one periodic element of color i for each ie /. This concludes the
proof of the proposition. ||

THEOREM | (Lagrange Inversion Formula, Species Version). Let M be
a colored species and let A,, be the colored species of M-enriched species of
M-enriched plethystic trees. Assume that n2Kk, and let J={ie T :n,#0}.
Then

(oA )0 ]l = (:) -

(n FM"—M" -M""‘)) [n—k]),

ielJ
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FiG. 5. An example of a plethystic function with marked contractions.

written by help of abuse of notation. (The notation could be made strict by
using Mobius species [M-Y ].)

Proof. By Proposition 10.1 we know that

I(H FM M- ] %(M"')) [(E f1:)]

iel ieJ~1

counts the plethystic functions which has periodic elements of color i for
each ie . But we would like to count plethystic functions that do not have
any periodic elements at all. By inclusion and exclusion the number of such
plethystic functions is

(an MY ] Z(M"f))[(E,flE)][.

iel ied--1

Z (— l/)

=¥

By abuse of notation we can write the above

S (-1

FR=avs

(H FM M ] Z M"‘)[(Efl )]‘

iel ied—1

=X (—U"’(]_[«%"I(M’M”") [1 %(M"')) L(E f1£)]

1=J iel iedJ--1T

(n z(M"'—M'M"'*')) E £17].

ied
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This is the number of nonperiodic M-enriched functions from the set
(E, f|g) to the set (E, f|.) w k. Thus we have the identity

A MLE f1:)]1= (H %(M”‘—M'M""’)> [(Eaflb‘)]"

fed

Now by Lemma 4.6 and the above identity, Lagrange inversion formula
follows. |

By equating the coefficients of the equation f(x)=x, - (G * f)(x) a system
of recurrences occurs for the coefficients of f(x), and this system is easily
seen to have a unique solution. Hence the equation f{x)=x, -(G * f)(x)
uniquely determines the power series f(x).

THeorREM 2 (Lagrange Inversion Formula). Let f(x) and G(x) be power
series in the variables (x,);. » such that

J(x)=x,-(G*f){x).

Assume that n 2>k, and let J={ie T :n,#0}. Then

[x"1(x* « f)(x)=[x""*1 ] H,(x),

iedJ
where

0G(x)
dx,

H,»(X):%(G(x)"r_xl_ 'G(X)"'—l>.

Proof. Let M be a colored species and G(x) its generating function.
That is, G(x)=card(M;x). Let f(x)=card(A4,;x), where A,, is the
colored species of M-enriched plethystic trees. Since A,, =X, - (M x 4,,),
we get

f(x)=card(4,,; x)
=card(X, - (M = 4,,); x)
= x, - (card(M; x) * card(A4 »,; X))
=x, - (G(x) * f(x)).

But f(x) is uniquely determined by the above equation. Hence f(x)=
J(x)=card(4,; x).
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Now the left-hand side of the species version of Lagrange inversion
formula is equal to

(a0 = | 57 | cardry A0

x" ]/ xk
Ll )
n!
=i [x"J(x* * f)(x)

And the right-hand side

)

(H F(M"— M M"") n—k]‘

n x"

) d{[T#M =M= M), )
( ) [(n k)]Car <H, X
'

=%' [x"*] H F(G(x)"—x,G'(x)-G(x)" 1)
n!

=E.[xn7k]‘[‘[ Hi(X)

iel

Thus we have proven the theorem for formal power series G(x) such that
[x"/m!] G(x) is a nonnegative integer for all multi-indices n. By the
principle of extension of algebraic identities the theorem follows for all

G(x). |}

We point out that one can also prove the above theorem by directly
enumerating plethystic trees. This method is based on counting the number
of plethystic trees, given a degree sequence in each color class. Observe that
the degree of a node is a multi-index; hence a degree sequence is a function
from multi-indices to nonnegative integers. This can be done in two
possible ways. The first method is to count unlabeled plane plethystic trees.
This corresponds to ordinary generating functions. This method is a
generalization of Raney’s proof of Lagrange inversion formula [R]. The
second method is to count labeled plethystic trees, which correspond to
exponential generating functions. This proof generalizes the third proof of
the Lagrange inversion formula that appears in [S].
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11. Goop’s INVERSION FORMULA
Let R w E be a colored n set and R a colored k set. Let J={i:n,#0}.

DEeriNiTION 11.1. Let 7 be a finite subset of 7, and let = be a permuta-
tion on I. Define the colored species P% by PRI (E, f)] is all M-enriched
colored functions ¢, such that there is a subset {e;},., of E such that
fle,)=i, ¢le;)=e,,, and for all b€ E there exists a positive integer k such
that ¢*(b) e {e;},.,. The elements e, are called the attracting vertices.

If 7 only consists of one element, that is /= {7}, then P%, is just a colored
contraction, with the attracting vertex of color i. If 7 is the empty set, then
Po=1.

™M

LemMma 11.1.  The colored species
1 METIEn
iel

is naturally isomorphic to M-enriched endofunctiony, such that there are
elements e, such that f(e;) =i and y(e;) = e, for all elements b we have that
wib)e {e;}ic,. The last condition makes the function § to be of depth 1.
Moreover, we do not put any M structure on the fiber y '(b), if b¢ {e;},c

Proof. By Lemma 4.4, M; " ' chooses a M,-enriched contraction of
depth 1 and the attracting vertex of color = ~'(¢). Thus

«(r7H())
[ M,
iel

chooses a function ¢ such for each ie[ a fixpoint of color = ~'(i), and to
each of them a contradiction of depth 1. Now define w(e,. 1)) =e¢,. Define

[ é; €;
o) o} 0

M M M,
00 oXe) oXe)
e e ek)
o ~o o

M, M, M,
00 00 o O

Fic. 6. The construction for the permutation n(i)=j, n(j)=k, and n(k)=1i.
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F1G. 7. An example with a colored function with the product [],, M,""‘]"" marked.

a new function y by y(b)=w(d(b)). Note that  is a colored function.
Enrich the colored set ¢ !(h) with the structure ¢ '(w '(b)). This
completes the bijection. |

PROPOSITION 11.2. Let I be a subset of J. Let m be a permutation on the
set I. Then there is a natural bijection between the set

(11w omez - 1w LE 1)

iel ied -1

and the set

(N % Pl Endg)[(E, flg)]

Proof. We can write

I—I M-(n"li))M:zr—l . 1_[ M:”:H M-(n“(il).lvln—e,'

el ied -1 iel

By Lemma 11.1 the first term in the above product chooses a M-enriched
endofunction such that there are elements e, so that f(e;)=1i and y(e,) =
ey for all iel, and for all elements & we have that g(b}e {e},.,. Let
C={e; :iel}, and we call these elements the attracting vertices. Let E,; be
the underlying set of elements that this structure is built on.

The set (R v E)— C has the cardinality n —e,. Hence the colored species
M" ¢ chooses an M-enriched function from the colored set (E,, f|,) to
the colored set ((RW E}Y—C, fliru i) - )

Thus by taking the union between these two functions we get an
M-enriched colored function  from the colored set (E, f| ) to the colored
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FiG. 8. An example with a colored function with the colored species P, marked.

set (E w R, f) with attracting vertex e, of color i for each i€/, such that
yle;)=e, foralliel
Now consider the right-hand side of the proposition.

A% PGy -Endg,.

The first term 47%, describes the part of the structure of the function whose
underlying elements will reach the colored set R after repeatedly applica-
tion of the function. The second term P, describes the part of the structure
whose underlying elements will reach the attracting vertices. Finally, the
third term Endgy, describes the part of the function whose elements will
reach cycles. Hence this is the same set of structures as above and thus the
result follows. |

Define ¢(n), where m is a permutation, as the number of cycles in 7.
PrOPOSITION 11.3. Let je 7. Then we have that

SN (=) (P Endy) =0

IcJ neS[I]
Proof. Let T be the set

7= U (Pa-Endg) 7 [(E )]

IcJ neS[]

An element of T is written as (¢, n, K, ¢), where ¢ is the M-enriched
function, 7 is the marked permutation of colors, X is elements which have
the colors the permutation 7 acts upon, and ¢ is the marked element of
color I. Define the sign of (¢, 7, K, ¢) by sign((¢, 7, K, ¢))=(—1)"".
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VAR
‘\ /°

49 o
! i
oO—=0—=Q0—=0 O (o] o] o]
xg X Kt

FiG. 9. The construction of v in case (iii}).

We construct an involution y on 7 that is sign reversing. That is,
(4, 7, K, ¢)) = (4, 7, K, ¢), and sign (x((¢, 7, K, ¢))) = —sign(($, 7, K, ¢)).
From this the proposition follows since y defines a bijection between the
two sets

{re T:sign(t)=1) and {re T:sign(t)y=—1}.

Given (¢, ©n, K, ¢) € 7, we now start constructing the involution
g, K )=, 0L, c)

Define the sequence x,, vy, x,, .. by the following rules. Let m be the
smallest nonnegative integer such that ¢™(c) is a periodic element. Let
xo=¢"(c). Define x, = ¢*(x,) for k= 1.

Let n be the smallest nonnegative integer such that f(x,) e
£f(x0), -, f(x,,. )} w f(K). Observe that such an integer exists since x, is
periodic element. Four cases can occur:

(i) n=0 and x,€ K. Then remove the cycle {x,, x, ..} from the
marked permutation. That is, L = K — {x,, x|, ...}. Restrict also = to the set
SLYy=f(K)—{f(x¢), flx,), ...}, tOo obtain a. But let Y =¢, and let them
have the same marked element c.

(ii) x,=x, Then add the cycle {v,, x,.., x,_,} to the marked
permutation. That is, L=K v {xg, X, .., X, _, }. Extend also 7 to the set
SILY=f(K) @ {f(xe), f(x}), ... f(x, )}, to obtain o. But let = ¢, and let
them have the same marked element c.

(i) f(x,)ef(K). Assume that f(x,)=f(z,) for some element z, such
that z, is in the permutation 7. Assume that the length of the cycle the
element z, is in is k. Let z;=7#'(z,). Thus z, =z, and {z,, ..z} are the
elements of the cycle. Define ¥ by

Xp4 if b=z,
wib)=<r=z, if b=x,
d(h) if b#z,b#x,.
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Fic. 10. The construction of  in case (iv).

As in the previous case, the colored sets ¢ ~'(5) and iy ~'(b) have the same
cardinality for all he £ and thus the functions ¢ and y have the same
enrichment.

But remove from the marked permutation the cycle {z,, .., z, }. That
is, L=K~-{z,, .., z;}. Restrict n to the set /(L) =f(K)— {f(z}), .. f(24)},
to obtain the permutation a. Let ¢ still be the marked periodic element of ¢.

(iv) f(x,) € {f(Xe), s fx, )} Assume that f(x,) =f(x,,) for some
integer m such that 0 <m <n— 1. Define y by

X+ 1 lf b =X,
l//(b) =94 Xn+1 lf b =X
é(b) if b#x,,b#x,.

Observe that the colored sets ¢ '(b) and i ~'(b) have the same cardinality
for all he E. Thus the functions ¢ and ¥ have the same enrichment of the
colored species M.

But extend the marked permutation with the cycle {x,,,.., X,}.
Hence we can write L=Kuw {x,,,,,..x,}. Extend also n to the set
S =K)w {f(x,,:1), > f(x,)}, to obtain g. Let ¢ still be the marked
periodic element of ¢.

Clearly sign{(¢, =, K, ¢)) = —sign{{y, g, L, ¢)), since the difference in the
number of cycles of = and ¢ is one.

It remains to show that y is an involution. Now if we apply y twice
observe that we are going to add and remove the same cycle from the
partial permutation 7. This fact checks in all four cases above. Observe that
cases (i) and (ii) are dual and that the cases (iii) and (iv) are dual. Thus
7 is an involution, and the proposition follows. |}

LemMma 114,

Y Y (=) Py -Endyg=1.

t<=J neS[]
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Proof. Let
A(x) —card(z Y (—1)"‘"’P”M-Endm;x).
IcJ neS[I]
Observe for all je 7 that
é .
Ax)=card| Y Y (—1)"™(P%-Endg) Y x)=0.
5x ISJ neSI]
Hence for all je 7 we have that (6/0x;) A(x)=0. Thus solving for 4(x) by
integration, we observe that 4(x) will be a constant. To find this constant

observe that the colored species P will contain the empty function. Thus
the constant equals 1 and the resuit follows. §

Lemma 11.5. Let (a;;); ;. , be a matrix. Then

det(éi.j'bi—ai,j ijed = Z Z ("])C("] H b; n A n-l(i)

IcJ neS[/] i¢l iel

Proof.

det((si,j'bi_ai,j)i,je.lz Z (— 1)|ll H b, det(ai,j)i,jel

IeJ i¢f

=y (=" ¥ sign(m) 18,11 a1
icJ re S(I] i¢l iel

= z Z (_I)C(ﬂ)nbf”ai.n“‘(i)‘
I<J nmeS[7] i¢l iel

THEOREM 3 (Good’s Inversion Formula, the Species Version). Let M
be a collection of colored species. Let Agvl” be the colored species of
M-enriched trees, with the root of color i. Let J= {ie F :n,#0} and assume
that a = k. Then we have that

(MR g))n]l = (k) |(det(8,, M~ M- M), . ) — K,

written by help of abuse of notation. (The notation could be made strict by
using Mobius species [M-Y].)
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Proof. By Lemma 11.5, Proposition 11.2, and Lemma 11.4 it follows
that

I(det(d, , M7 =MV - M7 1), ) [n—k]]|

(£ 5 T M) k)

IS4 neS[I] i¢ 1 iel

= (Z Y (_1)‘1"’.,,1”'15"1)"'5“(11\71) [n_k]l

1cJ neS(]

(‘gd YT (—1)ywep,. EndM) [n—k],

1cJ nesS[1]

=A% [n—k]|

Now by Lemma 4.6 the result follows. |}

The Lagrange inversion formula follows easily from Good’s inversion
formula. To see this implication, use the collection M=(Z(M)),.,.
Observe that i £ j implies that (% (M))" "' =0. Thus the determinant in
Good’s inversion formula is upper triangular, and it follows that its value
is the product of the elements on the main diagonal. Thus the Lagrange
inversion formula is proved.

By equating the coefficients of the equation system f(x)=x-(Gf)(x) a
set of recurrences occur for the coeffients of f(x), and this set of recurrences
is easily seen to have a unique solution. Hence the equations f,(x)=
X, (G, f)(x) for ie 7 uniquely determines the collection f(x). Moreover, it
is easy to see that f(x) is a summable collection.

THEOREM 4 (Good’s Inversion Formula). Let f(x) be a summable
collection of formal power series and let G(x) be a collection of formal power
series, such that for ie 7

Ji(x)=x;- (G, f(x)).

Let J=1{ieJ n,#£0} and assume that nz k. Then we have that

(51’,] . G((x)"i—_r’,g_G;_‘;_(__)f_) G,(X)"“‘)
i 0X;

aa)

[x*] [T fitx)o =[x *] det

ied ijeJ

Proof. Let M, be a colored species and G,(x) its generating function.
That is, G,(x} = card(M;; x). Let f;(x) = card(Ai\id’; X) where Af\-',l' 15 the



INFINITE VARIATED GOOD’S INVERSION 249

colored specncs of M-enriched colored trees with root of colori. Since
AY =X, (M,°Ag), we get

fi(x)=card(4; x)
=card(X;- (M, A g); X)
=x,--(card(M,~;x)ocard(KM;x))
=x;- (G, o F)(x).
But fi(x} is uniquely determined by the above equation. Hence f,(x)=
fi(x)=card(4%; x).

Now the left-hand side of the species version of Good's inversion formula
18 equal to

(Eanin) = | 3 ety
xn xk
=[..7](mof) )
[x"]( £)(x).
And the right-hand side

(b) et pr— a0 bz ), )n k]

LN card(det(8, , M — M; V- M7 1), i x)
- k (n—k)' i/ i i i ijeld:

~ 0G,(x)
K,-' ﬁ.‘(, G( ) ),.,‘e_].

Thus we have proven the theorem for formal power series G,(x) such that
[x"/n!} G (x) is a nonnegative integer for all multi-indices n. By the
principle of extension of algebraic identities the theorem follows for all
G(x) and f(x). |

'
=I~I:—;- [x" %] det <5i.,G,(x)"'—

12. UMBRAL CALCULUS

We give here a short review of some result in the infinite variated multi-
variable umbral calculus. The theory was developed in [C] by W. Chen.
We only present those results that we need for this presentation.
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Let #'[x] be the set of all polynomials in the variables (x;);,.,. An
operator M on X [x] is a linear map from ' [x] to itself. Three classical
operators are

(i) The partial differentiation with respect to x;. That is, the map

op(x)
D, =
i P(X) ox,
(ii) The multiplication with respect to x;,

X, p(x)=x, p(x).

(iii) The shift operator. Let a be a vector, then the shift is defined
to be

E*p(x)=p(x +a).

We say that an operator T is invertible if there is another operator S such
that 7S =1, where 1 is the identity operator.

DerFINITION 12.1.  An operator 7 is called shift invariant if it commutes
with all shift operators; that is, for every vector a,

TE*=E*T.
From [C] we have the following classification of shift invariant operators.

PROPOSITION 12.1.  An operator T on X [x] is shift invariant if and only
if it is a formal power series in the differential operators (D,),_ ». Thus we
can write

The formal power series 3., a (t"/n!) is called the indicator series of T.

DErFINITION 12.2. A delta operator is a shift invariant operator Q such
that 01 =0.

DEFINITION 12.3. A summable collection of delta operators Q= (Q;),. 5
is a set of delta operators Q; indexed by the set 7, such that their indicator
sequences are summable.
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We say that a summable collection of delta opererators Q is admissible
if there exists a summable collection of formal power series g(t) = (g,(t));. »
such that

(qog)(t) =t
or
(‘L‘D g)(t) = tia
where g,(t) is the indicator sequence of Q;. If Q is admissible, we denote

g:(t) by g '>(t) and g(t) by <~ "(t).

PROPOSITION 12.2. Let Q=(Q,),.» be a summable collection of delta
operators. Then there exists a unique polynomial sequence p (x), indexed by
multi-indices n, such that

Q;p.(x)= nipnfe,(x)s
and

Pa(0)=10,0-

Such a sequence is called a basic sequence of the collection of delta operators Q.

PropoSITION 12.3. Let Q be a summable collection of delta operators,
which is admissible. Assume that Q, has indicator series q,(t). Let (p,(x)) be
the basic sequence of Q. Then we have

e R O)!

ie ¥

where q¢~'7(t) is the inverse defined above.

13. THE GENERAL TRANSFER FORMULA AND GOOD’S INVERSION FORMULA

DerFINITION 13.1.  The Pincherle derivate of an operator T is defined by
0{T)=Tx,—x,T.

Observe that the indicator sequence of 0,(7T) is the derivative of the
indicator sequence of T with respect to ¢,.

LEMMA 13.1.  For a formal power series M(x) we have that

[x*] M(D)x"=[x""*] % M(x).
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Proof. Since the identity is linear in M(x), it is enough to consider the
case M(x)=x"
[x*]D""=[x*](n), x""
=040 n (M

=0, n (M),
n!
= [Xn'/ k] E—!x". '

Lemma 13.2. Let Q be a summable collection of delta operators, where
Q. has indicator series { <" (t). Assume that Q is admissible. Then we have

n!
pax) =2 x* S [ - ),
T !
where (p (X)) is the basic sequence associated with Q.
Proof. We have by Proposition 12.3 that
Zp (x)- —,= (Z xf-ﬁ-(t)>-
ie

Thus by looking at the coefficient of t"/n! we get

Pa(x)= [;l—,] exp (Zj X, -f.»(ﬂ)

—mpeyy, [T Ee/dO0 f'm)k

k ie?

_ny[tn]Z i I‘[ /

—Zxk[t] (t" t. 1

THeOREM 5 (The General Transfer Formula). Ler Q=(Q;),.» be a
summable collection of delta operators, such that Q is admissible. Assume
that we can write Q;= D,P,, where P, is an invertible shift invariant operator.
Let (p,(x)) be the basic sequence of the summable collection Q. Let
J={ie7 :n,#0}. Then we have

po(x)=det(6, ;- P, "— D, 0 (P, ') P "‘H),jejx

Moreover, this formula is equivalent to Good's inversion formula.
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Proof. First we prove that Good’s inversion formula implies the general
transfer formula. Let A,(t) be the indicator series of Q,. Since Q,; is a
delta operator we know that A '’(t) =f,(t) exists. Moreover since P, is
invertible let G,(t) be the indicator series of P;”!. Hence G,(D)= P, '. Thus
we have

[P =14-Gt),
This equation is equivalent to
i 0M)=t-G'(v),
which can be written as
f(t)=t-(G-1)(¢r).

Thus f;(t) =1, (G- )(t). Let (p,(x)) be the basic sequence associated with
Q. Thus by Lemma 13.2, by Good’s inversion formula, and by Lemima 13.1,
we have that

palx) =Y x* T o [ 1)
k

!
= X x* 1 [x"Ixk< D(x)
X

o . JG,(x) =1
=Zx"—l;—![x k:]det<5f,j'Gr(") % éx; i) >.,JGJ

k

=Z x* [x*] det(d, ;- G,(D)"— D, 3,(G,(D)) Gi(D)"'Hl)i.jeJ x"
X

=det(d, ;- G;(D)"~ D, 3,(G,(D)) G,(D)"" '), ;. , X"
=det(5,»'j-P,- ”'_ ,’ ‘j(Pi )Px ”l+])i.je.lx ’

which proves the general formula.

It is easy to see that the general transfer formula implies Good’s inver-
sion formula. First assume that G,(x) ' exists for all ie 7. Since f,(x
x; (G-f)(x), we know that f<~'’(x) exist. Let Q be the plethystlc delta
operator with indicator series <~ '’(t). Then by the same list of equalities
as above we conclude that

5 x 2 [xkcfy(x)
2T

6G (x)

T LA ( n n—l)
=) x*—[x det{ 4, ,-G.(x G, .
% al ] i Gix) Tox, i(x) s

607 103 2-9
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Take the coefficient of x* on both sides and we obtain the Good’s inversion
formula,

TG )
5-\'/' ijed

Thus the implication is proved in the case when G,{x) 'exists for all ie 7.

To complete the proof of the implication, consider the coefficients b,
of the collection G(x)= (G, (X)), as indeterminates. That is, G, (x)=
3a by x" Let now

[x" ]t =000 = [x*+ det (5,,-G,x)" —,

0G,(x)

"n»m=["“‘“Nﬂ(5,-.j~G,~(x)"‘—x, = G.—(X)""') .
i,jed

J

Observe that a, ,, is by the above equation expressed as a polynomial in
the indeterminates b, ,. Let f,(x)=3%, 4, ,Xx" We claim that f,(x)=
X, (G, o T)(x). Compare coefficients of both sides. The equations that arise
are polynomial identities in the indeterminates b, ,,. But we have shown
above that these identities are true in the case when b, ,, is nonzero for
each me 7. By the principle of extension of algebraic identities, the poly-
nomial identities follow and the claim is proved. By the uniqueness of the
collection f we conclude that f,,(x) =7,,(x). Now to prove Good’s inversion
formula, use that it is a polynomial identity in b, and apply again the
principle of extension of algebraic identities. This argument finishes up the
implication and thus the equivalence is proved. |

14. THE PLETHYSTIC UMBRAL CALCULUS

Assume now that our index set J is given the structure of a ¢-monoid.

DEerFINITION 14.1.  The Frobenius operator of a shift invariant operator
T=3,a,(D"n!) is defined to be

D\’i(n)
n!

F(T)=}a,

Thus we have that

)=D, ;.
DErINITION 14.2. A plethystic delta operator is a shift invariant operator
Q such that Q1=0 and Qx, is a nonzero constant.
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Observe that Q = (#(Q)),. » i1s a summable sequence of delta operators.
Hence by Proposition 12.2 there exists a unique polynomial sequence
2.(x), index by multi-indices n, such that

‘%(Q)pn(x)=nipn—e,(x)’

and

Pa(0)=0,,.

Such a sequence is called a plethystic basic sequence of the plethystic delta
operator Q.

15. THE PLETHYSTIC TRANSFER FORMULA AND
LAGRANGE INVERSION FORMULA

Choose a linear ordering (, <) of the c-monoid 9, which is
compatible with the divisibility ordering (7, <). That is, (7, <) is a total
order such that i< j implies i< j.

ExaMmPLE 15.1. In the c-monoid of positive integers under multiplica-
tion, (P, -, 1) we can choose the linear ordering (P, <) to be the natural
linear ordering on positive integers. Note that this linear ordering is
compatible with the divisibility ordering.

We employ the following rule when multiplying noncommutative
products over the index set J, where J is a finite subset of . Multiply the
factors in the order given by (7, X). That is

HA,:A”.AI.Z...A.

[/ %4
ied
where J={i|, i3, c, iy a0d [, <iry < -+ <.

Note that the plethystic inverse of f(x) exists, that is, f<~'>(x), is
equivalent to that the inverse of G(x) exists, which is G~ '(x).

ProroSITION 15.1. Let G(x) be an invertible formal power series, and
suppose f(x)=x, - (G f)(x). Let P be a shift invariant operator with indicator
series G~ '(x). Then

(n X, Py X ) 1 =(H H.(D)) X",

ielJ ies
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where
aG(x
H,.<x)=%(0(x)"'—xl- o ’-G<x)""1>'
Ox,

Proof. By the definition of Pincherle derivate, we have that
[Tx:P7mxy =T (P "xf— 0P ™) %7 ). (1)
ieJ ieJ

Let
_(oup; ™), i el
K""{P;"A if ieJ-T1
and

I - xp! if iel
AL g if ieJ—TI

-1

Observe that if i<, then i % j, so the operators L,,; and K, , commutes.
That is,

Li,11<j.1= Kj.lLi,l'

Note also that the K,, and K,, commutes and that the L,; and L,
commutes. Thus we can expand the right-hand side of (1), and using these
commuting relations

OxpPmxr =3 (=D" ] KL,

ieJ IcJ ied
= Z, (—1)'” H Ki,l'n Lu
fcJ ieJ ied
= Z (“l)m n Ki,l' H Ki.l' n Li.l'
1cJ iel ieJ—1 ieJ

Apply now the above operator identity to the polynomial 1, and we obtain
(n X P ’_‘7'71> 1 :( Z (— 1)”] H K, n Ki.l) x" e (2)
ied iI<J ied ieJ—1
For ie I we then have that
K =0,P™)

=F(0,(P"™))

=F(3.(G(D)™))

=Z(n,G'(D)G(D)" ).
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Similarly for ie J— 1,
K ,=Z(G(D)").

Apply this now to Eq. (2):

(H l‘fPfi"'!?’J> 1

ieJ

= ( Y. (=D ] #(nG(D)GD)"')-T] %(G(D)”’)) X<

yA=N) iel ied

=(Z (= 1) [] #(n.6'(D) GDY* )

1=J iel

"I #@oy ]~ D)

ied—1 iel n;

=<Z (-1 #(D,¢D)GDYy ). [] %(G(D)”')) x*

reJ iel ieJ—1

— ([ Z(G(DY" —DIG’(D)G(D)”"")>X

ield

That completes the proof of the proposition. |

William Chen obtains in [C] the plethystic transfer formula.

THEOREM 6 (The Plethystic Transfer Formula). Let P be an invertible
shift invariant operator, and let (p (X)) be the plethystic basic sequence of
the plethystic delta operator Q = D, P. Let P, denote F,(P). Then we have

p.,(x)=(ﬂ X P x?") L

ield

THEOREM 7. The plethystic transfer formula and the plethystic Lagrange
inversion formula are equivalent.

Proof. Apply the plethystic case to Theorem 5. Observe that i £ jimplies
that 9,(%(P) ')=0. Hence the determinant will be upper triangular.
Recall that the determinant of an upper triangular matrix is equal to the
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product of the elements on the main diagonal. Thus we know that the
plethystic Lagrange inversion formula is equivalent to the formula

p“(x)=l—[ (Piin"‘Diai(Pf"’J“l)x“

iedJ

=[] #(P "D oy(P )P " )x"
ieJ

=[] #(G(D)"—D,G'(D) G(D)"~ ') x"

ied

=[] H,(D)x"

ielJ

Thus by the identity in Proposition 15.1 we conclude that the plethystic
Lagrange inversion formula is equivalent to the plethystic transfer

formula.
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