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Abstract

Weintroduce a large self-dual class of simplicial complexes for which we show that each member
complex is contractible or homotopy equivalent to a sphere. Examples of complexes in this class
include independence and dominance complexes of forests, pointed simplicial complexes, and their
combinatorial Alexander duals.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we introduce a large class of abstract simplicial complexes for which
it is possible to show purely combinatally that each of its members is contractible
or homotopy equivalent to a sphere. We call the complexes of this classtrictive
complexes. In general it is hard to say whether the geometric realizations of two abstract
simplicial complexes are homotopic, since a homotopy equivalence between topological
spaces may preserve little ¢fie underlying discrete structure. There is however a notion
of homotopy equivalence, callsimplehomotopyequivalence, that is close enough to the
discrete world to have a combinatorial meaning. Simple-homotopy equivalence is defined
as a sequence alementary collapseand their inverses. These operations, studied by
Kalaiin [13] andby Kahn et al. in 1 2], are combinatorially defined and induce a homotopy
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equivalence of simplicial complexes. Anotlt®nbinatorial operation that clearly does not
change the homotopy type t®ntracting an edgevhenever the combinatorial structure
allows it. It is essential to notice that edge contraction may be realized by a sequence
of elementary collapses and inverse ebetary collapses; we will prove this in the
prdiminary Section 2

The basic example motivating our research was the simplicial compspacfesubsets
of the set{1, 2, ..., n}, i.e., the simplicial complex whedaces are the subsets containing
no pair of consecutive integers. For all this mmplex is homeomorphic to a wedge of
spheres by the results of Billera and Myeg$ ¢n interval aders, and it is contractible
or homotopy equivalent to a sphere as a consequence of Kozlov’s theory of complexes of
directed trees14].

The class of constrictive simplicial complexes contains all complexes of sparse sets, and
includes many other important examples. Constrictive complexes are formally defined in
Section 4 They are closed under contracting an edge, and their simplest examples are the
empty set, and boundary complexes of simplices. The structure of constrictive complexes
is best understood in terms of the structufenon-faces of simplicial complexes; this
approach to edge contractions is develope8aation 3 Using the non-face approach it
is almost immediate from the definition of a constrictive complex that it must be homotopy
equivalent to a ball or to a sphere. What turns out to be harder to show is that many
simplicial complexes arising in a combinatorial or graph theoretic setting are actually
constrictive. Our examples includganching complexewhich generalize the notion of
the conplex of independent sets of vertices in a forest of trees, dominance complexes of
forests, angbointed complexesvhich appear in the work of Ehrenborg and Steingrimsson
[8] on playing Nim on a simplicial complex.

Branching complexes are shown to be constrictiv&éttion 5and an algorithm for
calculating the exact homotopy type of the independence complex of a forest is described
in Section 6 As a mnsequence we obtain the exact homotopy type of the complex of
sparse subsets @i, 2,...,n} as a function ofn. The dominance complex of a forest
is defined as the family of complements of its dominating sets and it is shown to be
constrictive inSection 7 Theproof indicates a method for calculating the actual homotopy
type.

Finally, in Section 8we revist the notion of the combinatorial Alexander dual
introduced by Kalai in13]. As it was already observed by Kalai, an elementary collapse
induces an elementary collapse at the levaludl complexes, but it is not clear in general
that the comhiatorial Alexander dual of a complex that is homotopy equivalent to a ball
or sphere would also be homotopy equivalent to a ball or sphere. This is true, however,
if we restrict our attention to constrictive complexes: it turns out that the combinatorial
Alexander dual of a constrictive complex is constrictive. The only difficulty in proving this
statement is in establishing the fact that the combinatorial Alexander dual of the boundary
complex of a simplex is constrictive, since it is pointed. Our theorem allows us to state the
dual of every result in the preceding sections.

Itis not clear to us what would be the “best” approach to proving homotopy equivalence
to balls or pheres for simplicial complexes in general. The widely known method of
shellings, even in its non-pure form as introduced by Bjorner and Wa8hs¢ems to
be more suitable for studying the homeomaorphy rather than the homotopy type, and it is
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worth nding that for the class of constrictive simplicial complexes, a more elementary
approach than discrete Morse theat{[suffices.

2. Preliminaries

Definition 2.1. An abstract simplicial complex: on a finite vertex seY is a family of
sets{o € A : o C V} satisfying the following properties.

@) {v} e aforallveV.
(i) If o € A then every subset C o belongs taA.

The elements of\ arefaces the eements ofV are calledvertices By property (i),
giving the set of faces determines the sevetices. Hence we may identify an abstract
simplicial complex with its set of faces. Thlimensionof a faces is |o| — 1, maximal
faces are callethcets and one-dimensional faces are calkhes

Given asubsetU C V of the \ertex set, theestiction A |y of the smplicial complex
to U is the simplicial complex with vertex setand face seh |y = {0 : 0 € A,0 C U}.
Another important notion is the link of a faeein the complexA, defined by

linka(o) ={t CV\o:tUo € A}

Every abstract simplicial complex hastandard geometric realizatioWe tale a basis
{e, : v € V}in RIVI and the union of the convex hulls of sé¢és : v € o'} for eacho € A.
Homobpic or homeomorphic properties of a finite simplicial complex are the same as
those of itsgeometric realization.

Definition 2.2. We call an edgdu, v} of a simgicial complexA contractibleif every face
o € A satisfying{u} Uo € A and{v} Uo € A alsosatisfiegu, v} Uo € A.

If the edge{u, v} € A is contractible, the contracted simplicial complax{u, v} is
constructed as follows:

— We renove the erticesu andv from the vertex se¥ and add a new vertex.
— Asett C V\{u,v} U{w}is aface ofA/{u, v} if w & T andt € A orw € 7 and at
leastone oft \ {w} U {u}, T \ {w} U {v} is a face ofA.

To simdify our notation, the “new” vertex may be identified with eitheor v; herce
we may talk of “contacting the edgéu, v} tou”, for example. It is visually straightforward
that contracting a contréible edge induces Aomotopy equivalence of the geometric
realizations.

Afacer € Aisfreeifitis contained in a unique facet. If |o \ 7| = 1 then the removal
of T ando is called arelementary collapse

Definition 2.3. We call the simplicial complexea andA’ simplehomotopidf there is a
finite s@uenceA = Aq, Ay, ..., A, = A of simplicial complexes such that for each in-
dexi atleastone of\; andA;, ; may be obtained from the other by an elementary collapse.

Elementary collapses and simple-homotopy are well-studied topological notions. A
good reference is Cohen’s bod} vhere, athe beginning of Chapter I, these notions are
introduced for finiteCW complexes. It is well known that simple-homotopy is a narrower
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equivalence relation than homotopy equivalence. In the literature of combinatorial papers
on the homotopy type of various abstract simplicial complexes it is also customary to cite
a (much lger) paer of Kalai [L3], which was one of the firgbnes to use ik notion in a
combinatorial setting. M. Cohen callsgtinverseof an elementary collapse atementary
expansion thecombinatorial literature seems to prefer the temmticollapse

It is worth noting that simple-homotopy includes the possibility of edge contraction,
because of the following theorem.

Theorem 2.4. If the edge{u, v} is contractible in the simplicial complex, then the
complexA and the contracted simplicial complex/{u, v} are simple-homotopic.

Proof. Consider the set of faces
S={c CV\{uv}:o0U{v} e A,oU{u} €A}

Order his setS = {o01,...,0m} suchthate; < o implies thati < j. (This may
be achieved, for example, by writing a list of the elementsSoih increasing order of
cardinality.) LetA; be the amplicial complex

Aj=AU{oU{u},0iU{u,v}:1<i < j}

Note thatAg = A and thatA ;. is obtained fromA; by an anticapse. Moreover, if a

faceo of the last complexyy, containsv theno U {u} € Ap,. (In other words, using the

terminology ofDefinition 2.5below,the link of v in A, link 4, (v), is a ©ne with apesx.)
Let us now order the faces in link ({u, v}) = {r1, ..., Tn} suchthatzj O rj implies

i <j.Let

Iy =Ap\{n U{v}, i Ufu, v} s 1<i < j}.

Evidently, Iy = A, and I'j41 is obtained from["j by an elementary collapse. It is
straghtforward to see thaf, is the contracted complex/{u, v}. O

Beyond edge contractions and elementary collapses there are two operations on
simplicial complexes whichra not homotopy equivalences, but yield homotopy spheres
or balls: coningan arbitrary simplicial complex over a new vertexand suspensiorof
spheres or balls.

Definition 2.5. A simplicial complexA on a vertex seV is aconewith apexv € V if
everyo € A satisfiess U {v} € A.

If a simgicial complexA is a cone with apex then its geometric representation may
be contracted to the poief. Every smplicial complexA’ may be extended to a cone by
adding a new vertex to its vertex set, and the sefs U {u} : o € A’} to the set of
faces. The resulting simplicial complex is denoteduby A’. The extinsic and intrinsic
descriptions of the cone may be brought together by stating that a simplicial corajex
a cone with apex if andonly if A = v % A |y}

Remark 2.6. Not only is the geometric realization of a comex A contractible, but
contraction to a single vertex may be achieved by successively collapsing every pair of
facess ando U {u}. Herce a cone is also simple-homotopic to a single vertex.

Suspensiois more easily described the extrinsic way.
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Definition 2.7. Let A be an abstract simplicial complex on the vertex %et The
suspensior’(A) of A is defined up to isowrphism by adding two new verticesv ¢ V
to the vertex set, and settidg(A) = {o,0 U{u},oc U {v}: 0 € A}

Alternatively, a simplicial complex: is a suspension of a smaller simplicial complex,
if andonly if A = Y'(A \V\{u,v}) for some pair of verticefu, v}. The fdlowing lemma is
well known.

Lemma 2.8. If A is contractible thenY'(A) is contractible. IfA is homotopy equivalent
to a phere of dimension k theR'(A) is homotopy equivalent to a sphere of dimension
k+1

3. Edge contraction and non-faces

In our main results we focus on the homotopic properties of a simplicial complex
in terms of itsnon-facesthat is,the family{A C V : A & A}. A minimal non-face of
a simpicial complex is called a&ircuit. If there isa vertexv that is notcontained in any
circuit then the simplicial complex is a cone with apeand thus contractible.

We call a collection3 = {By,..., By} of non-empty subsets of a vertex séta
block systemTheindependence complek B overV, denoted byly (B), is the sinplicial
complex consisting of the faces

lv(B) ={0c CV:Bj £ o forall B; € B}.

The vertex set ofy (B) is

ARUA:T

i
IBjI=1

and hence in general we may assume that each Bpblkes cardinality at least 2. Certain
operations on block systems may yield singteblocks; at the level of the independence
complex this will simply mean that we remove the corresponding vertices from the vertex
set. InSection 8we will use a generalized definition of a simplicial complex, which will
make the exceptional treatment of singleton blocks unnecessary.

It is worth noting thatevery simplicial complex is an independence conpleis the
independence complex of its circuits.

Let us rephrase edge-contraction in terms of non-faces. An ¢dgg € A is
contractible if for any non-facé ¢ A containing{u, v}, either A\ {u} or A\ {v} is a
non-face. In the contracted complexc V \ {u, v}U{w} isanon-face if eitheiw ¢ Aand
Ais anon-face in the original complex, ar € A and bothA\ {w} U {u} ando \ {w} U {v}
are non-faces in the original complex.

Lemma 3.1. Anedg€du, v} € A iscontractible if and only if no circuit (minimal non-face)
contains{u, v}.

Proof. Assume that some circug contains{u, v}. Then reitherB \ {u} nor B \ {v} is a
non-face, andu, v} cannot be contracted.
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Assume nowhat no circuit containgu, v} and letA be an arbitrary non-face containing
{u, v}. Since A cannot be minimal, it properly contains a circlit SinceB is a pioper
subset of A, it avoids & least one ofu, v, and soeither A\ {u} or A\ {v} is a
non-face. O

Lemma 3.2. Let B be a block sgtem on thevertex set V and let = Iy (B). Assume that
the edg€u, v} € A is contractible to the vertew. Then theresulting simplicial complex
is the ind@pendence complex of

B ={B:BeB,Bni{u,v} =0
U{{wjuB UB”"\{u,v}: B, B”"eB,ue B,veB"}

on the vertex set Y {u, v} U {w}.

Proof. We show that the non-faces of the contracted complex are exactly those subsets of
V' =V \ {u, v} U {w} which contain some element &'.

Assume first that a s&& C V'’ contains som® € B that is dispint from{u, v}. SinceB
isanon-face of the contracted complex, s®isAssume ngt that A C V' contains a union
of setsfw}UB’'UB”\{u, v} forsomeB’, B” € B satisfyingu € B/, v € B”. Thenboth A\
{w}u{u} andA\ {w}U{v} are non-faces in the original cqutex since the first one contains
B’ and the second one contaiBS. Herce A is anon-face in the contracted complex.

To prove the reverseclusion, assume thaA is a non-face in the contracted complex.
If w ¢ AthenA s also a non-face in the original complex, and it contains s@&me 5
which obviously satisfie®8 N {u, v} = @. Findly, if w € Athenboth A\ {w} U {u} and
A\ {w} U {v} are non-faces in the original complexd the first must contain a block
B’ € B containingu; the seond must contain a blocBR” € B containingu. O

4. Constrictivesimplicial complexes

In this section we present a class of complexes which will be shown to be contractible
or homotopy equivalent to a sphere, using only edge contractBursstrictivecomplexes
are defined recursively as follows.

Definition 4.1. A simplicial complexA on the vetex setV is constrictiveif the complex
A is the boundary of the simplex on the vertex &br there is a vertex in V belonging
to at most one ccuit with one of the following properties:

(i) v belongs to no circuit; or
(ii) v belongs to a unique circuB # V and there is a vertexx ¢ B such that contracting
the elge{u, v} yields a constrictive complex.

Under the circumstances of condition (ii), the edgev} is contractible byremma 3.1
since no circuitontains bothu andv. UsingLemma 3.2the @ntracted complex may be
described as the independence complex of a block system which is easily derived from the
non-faces of the original complex.

Lemma 4.2. A constiictive simplicial complex\ is simple-horatopic to a single vertex or
to the boundary complex of a simplex.
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Proof. We proceed by induction ofV/|. If A is the boundary complex of a simplex, then
there isnothing to prove. In case (i) dDefinition 4.1the simplicial complex is a cone
with apexv thus, byRemark 2.6it is reducible to a single vertex by a sequence of edge
contractions. In case (ii) we may apply the induction hypothesig]

In this section we give two initial examples of constrictive complexes; further classes of
constrictive complexes will be explored Bectbns 5through?. The firstone isthe class of
pointedsimplicial complexes. They appeared in the work of Ehrenborg and Steingrimsson
[8]. We call a simfticial complexA pointedif every circuitC of A contains a vertex that
does not belong to any other circuit af. Call the vertexv of the drcuit C the pointed
vertex ofC. UsingLemma 3.2one can prove the following.

Proposition 4.3. Let A be a pointed simplicial complean n vertices vth k circuits.
Then the omplexA is constrictive. Moreover, ifie vertex set V is the union of the
circuits C, .. ., Cx then the complex is simplehomotopy equivalent to am — k — 1)-
dimensional sphere.

Proof. If there is a vertexv that is not ontained in any circuit then the complex is
constrictive, and also homotopy equivalent to a point. Hence we may now assume that the
vertex setV is the union of the circuits. Take two circuits and contract their two pointed
vertices. Observe that this falls into case (ii) Dé&finition 4.1 The resultis a pointed
simplicial omplex onn — 1 vertices andk — 1 drcuits and where every vertex belongs to

at least one circuit. Proceed in this manned ave obtain a simplicial complex consisting

of n — k + 1 vertices and one circuit which consists of all the vertices. The independence
complex is the boundary of am — k)-dimensional simplex and hence is @an— k — 1)-
dimensional sphere. We may also conclisgenduction on the number of circuits that a
pointed simplicial comm@x is @nstictive. O

Our next example ishe independence complex of a family of intervals[dmn] =
{1,2,...,n}. We assume that our vertex set[is, n]. Aninterval | = [i, j] C [1,n]isa
set{i,i +1,..., j}. Here we allowi = j yielding a singleton as an interval.

Theorem 4.4. The ndependence complex of a family of interval§ bm] is constrictive.

Proof. We proceed by induction on. Thecasen = 1 is trivial. Snce nested licks may be
removed without changing the independence complex, we may assume that our family of
intervals is an antichain, that is, no intergaintains another. Then our family of intervals
may be written as{[aj, b1], ..., [ak, bk]} forsome 1< a; < a» < --- < a < n and
1<b; <by<--- <bk <nsatisfyingag; < b; fori = 1,2,...,k. If bx < nthen

the independence complex is a cone with apex n. Otherwisethe vertexv = by = n
belongs to the unique circyidk, bk]. If ax = 1 then he entire vertex sés a circuit and we

have the boundary of a simplex.df > 1 then onsider vertexi = ax — 1. The edgéu, v}

is contractible tau and the resulting simplicial complex is the independence complex of
the following blocks:

e intervals[a;, bj] fori < k — 1 saisfyingb; < u, and
e intervals[a;, bj] U [ak, bk] \ {n} = [a;, n — 1] fori < k — 1 sdisfyingb; > u.
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Note thata; < u always holds foii < Kk, sincea; < ax. Therdore we obtain the
independence complex of a family of intervals [dnn — 1], and we may nvoke the
induction hypothesis. O

We call a subset ofl, ..., n} sparseif it doesnot contain two consecutive integers.

Corollary 4.5. The simplicial complex consisting of all sparse sets {@n...,n} is
constrictive.

In fact, this is just the independence complex of the family of intervals
{[1,2],12,3],...,[n — 1,n]}. For a nore detailed discussion dlis simplicial complex
and its homotopy type seégorollary 6.3and the paragraphs thereafter.

5. Branching block systems

Definition 5.1. A branching block syste8 = {Bs, ..., Bp} is a set ofblocks such that
forevery{iy,io, ..., ik} € {1, 2,..., n}atleast one oB;, N Bj,, B, N Bj,, ..., Bj, N Bj;
is contained in (and hence equal &) N B, N --- N Bj,.

This definition may be rephrased as follows. Consider the graph whose vertices are
{i1, ..., ik}, and fawhich i, j} € {i1, ..., ik} is an edge ifand only if B N Bj properly
containsBi,; N Bj, N --- N Bj,. Then his graph contains nk-cycle.

Any subfamily of a branching block system igidently a branching block system. In
particular, if B < Bj for somei, j € {1,2,...,n} thenB; may be removed from our
family, without changing the independence complex. We sayBhad anested bloclof .

Proposition 5.2. A branching systen8 = {By,..., By} of at least two blocks either
contains a nested block or at least two blocks B; suchthat

Bz JB and Bgz|JB.
t#i t#]
In the proof of Theorem 5.3we needonly the existence of one such block, but
technically it is easier to prove the existence of two such blocks.

Proof of Proposition 5.2. Assume thatB contains no nested blocks. We prove by
induction on3_['_, |Bj| the existence of two blocks iteer of which is @ntained in the
union of the other blocks.

As a onsequence dbefinition 5.1, Bj; N B, N - -- N Bj, is not empty whenever none
of Bi, N Bi,, Bi, N Bi,, ..., B, N Bj, is the empty set. Consider the following gra@hlts
vertexsetiql,2,...,n}and{i, j} € {1,2,...,n}is an edge iand only if B; N B} # 0.
By our observatioi® is a “forest of cliques”, in other words, every 2-connected component
of G is a clique. In fact, if there are two vertex-disjoint paths betwieand j, then here
is also a cycldiy, . .., ix) containing both vertices, ari8l, N B, N --- N Bj, # @ implies
that any unordered pafrs, i1} is an edge.

Case 1: G is not 2-connected.
In this case after contracting each 2-conedatomponent to a single vertex, we obtain a
forest with at least two vertices. Such a forest has at least two leaves or isolated vertices.
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Assume thatii, ..., ix} and{ji, ..., ji} are two different cliques that contract to a leaf

or isolated vertex. It is sufficient to show that at least on8of . . ., Bj, is not contained

in the unon of the remaining blocks, and then the same argument may be repeated for the
it’s. If k = 1 thenB;, has non-zero intersection only with at most one other block, and that
block cannot contain it unless it is nestedk [ at least 2, then by our induction hypothesis
there are at least two bloclg;, andB;, suchthat

B, U Bj, and B, € U Bj, .
t£r t#£s
Since the 2-connected component containjngndis contracts to a leaf or isolated vertex,
only at most one 0B;, andBj, may have a non-empty intersection with aBiysatisfying
j €{i1,...,ik}. Theother one is not contained in the union of all the other blocks.

Case 2: G is 2-connected fad hence a clique).

In this caseB; N --- N By # @. Considerthe block systen3’ = {B/, ..., B/} where

B/ = Bi \ (B1N---NBp) # @. The systems3’ is also branching and non-nested. Moreover
> L, IB/| is strictly less tharp [ ; |Bi|. Hence we may apply our induction hypothesis.
If, say, B is not contained in the union of the othBrJf 's then B; is not contained in the
union of the otheBj's. O

Theorem 5.3. The hdependence complex of a branching block sygtem{By, ..., Bn}
is constrictive. As a consequee, the independence complex of a branching block system
is simple-horatopic to a single vertex or to a sphere.

Proof. We proceed by induction om. The basis of the induction is = 1. It is
straghtforward to observe that the independence comp}ékB;}) is constrictive.

If B contains a nested block, we may remove it without changing the independence
complex. Otherwise, as a consequencePobposition 5.2 there isat least one block
not contained in the union of the otheMlithout loss of generality we may assume
Bn ¢ UM; Bi. Let v be an element 0By \ ("=} B). Choose arm < n suchthat
Bm N By is a maximal element of the family of s€t8; N By, : i < n} ordered by inclusion.

(In particular, if B, is disjoint from all the otheiB;’s, m may be any index less than)
Since B has no nestedlbicks, there is a verteM € By, \ B,. The veticesu andv are

not contained in any minimal non-face oftindependence complex, and hence they are
contractible to a single vertax. By abuse ofhotation let us denote the new vertexalso

by u. UsingLemma 3.2 this identificaion allows us to describe the contracted simplicial

complex as the independence compleot {By, ..., B/ _,}, where
B — B; if uég B;
7B U(Bp\ {v}) ifue B;.
It is sufficient to show thaB’ is a branching block system, and we are done by induction.
Consider asubséts, ...,ix} of {1,2,...,n—1} and &sume firstthain & {i1, ..., ik}
Since B is branching, two cyclically consecutive elements of the (iBf,, ..., Bj,)

intersect inBj, N - - - N Bj,. Without loss of generality we may assume that

Bi, N Bi, = Bi; N---N B;,. (5.1



R.Ehrenborg, G. Hetyei / European Jonal of Combinatorics 27 (2006) 906—923 915

It is sufficient to show that
Bi,j_ ﬂ Bi’z = Bi,j_ ﬂ AR ﬂ Bi’k (52)

also holds. Itu € Bj; N B, thenu belongs to alB;,’s and Eq. §.2) may beobtained from
(5.1 by joining the saméB, \ {v} to both sides. ILi belongs to neitheB;, nor Bj, then we
have

B, NB,=B,NB,=B8j,N---NBj C B N---NBj

while the reverse inclusion obviously holds. Hence we may assumeutbatongs to
exadly oneof Bj,, Bj,; by cydic symmetry we may assume thait B;, \ B,.
Consider the following cyclic list of blocks:

(Bila Bm, Bn, Biga Bi37 L) Bik)~ (53)

By the branching property for3, at least two cyclically consecutive blocks on this list
intersect in the intersection of all blocks on the listBif N Bj;, is such an intersection
forsomej € {2,3,..., k—1} then we may remov8;; from our list without changing the
intersection of all blocksince in hat case w have

Bij N Bij+l C Bi, N B, =Bj; N---N Bj,

and by the obvious reverse inclusi@ N Bj;,, contributes the same set to the meet of
all blocks on the list agj, N Bj,. Similarly if Bj, N Bj, is equal to the intersection of all
blocks then we may removB;, from our cxclic list (5.3). Repeated application of this
observation ields a cyclic list of blocks containingi,, Bm, Bn, Bi, consecutively, with
the same intersection of @llocks on the list, and such that the only consecutive pair of
blocks intergcting in the intersection of all blocks on the list is eitfBgrN Bm, or BmM By,

or Bn N Bi,. The intersectionBj; N By containsu which does not belong t&;,; herce we

are left with the other two possibilities. By the choice B, the inersectionBy N By

cannot be a proper subset®f N Bj,, andhence we get
Bn N Bi, € Bj; N---N Bj, N BmN By € Bj; N Bi,.
This implies
Bi, N B{, = (Bi; U (Bn \ {v})) N B, € Bi; N Bi, = Bi; N---N Bj;
therefore
B, NB, S B N---NBj
and the reverse inclusion obviously holds.

We oonclude our proof by describing the adjustments that have to be made to the above
argument ifm belongs tofiy, ..., ix}. If the pair {i1, i} found at the beginning of our
argument does not contam then the only djustment to the above argument is at the
introduction of the cyclic list%.3). There ve will skip ij; = m from the list (and keep the
item By, occurring afteii; and beforeB,). Findly, if m € {i1, i2} then upon reaching the

assumptioru € Bj, \ Bj, we must oncludem = iy. Instead of the cyclic list§.3) we start
out considering the list

(Bm7 Bn7 Biza Biga e Blk)
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and keep removing;;’s for j > 2 until we get the shortest possible list with the same
intersection of all blocks, still containing the iterB,, Bn, Bj, consecutively. Again the
consecutive pair intersecting in the intersection of all blocks is eBhgn By or B, N Bj,,
and from here the argument is the samelJ

6. Theindependence complex of a forest

A simple undirected grapls with no loops or parallel edges may be considered as a
block systen’5 where each block df is of the form{u, v} for some edgev in the graph.
Moreover, the independence complexdbtonsists of all independent sets of the gr&ah

When the graph is a forethen he associated block system is a branching block system.
Thus the following is a direct corollary atheorem 5.3

Corollary 6.1. Let F be a forest on a vertex set V, that is, a graph without cycles. Then
the independence complex of F is constrictive and thus simple-homotopy equivalent to a
single vertex or to a sphere.

Proposition 6.2ets us recursively calculate éthomotopy type of the independence
complex of a forest. LeB = {By, ..., By} be a block system on the vertex &étand let
X be a vertex inV. Let By k denote the block systeifi with a path of lengttk attached
to the vertexx. That is, By k is a block system on the disjoint union of the &tand
{X1, ..., Xk} with the added block$x, x1}, {X1, X2}, ..., {Xk—1, Xk}. Similarly, let By k n
denote the block systewith two paths attached to the vertexone of lengthk and one
of lengthh. In our notationBx k.n = (Bx k)x.h-

Proposition 6.2. For a block systemB we have the following simple-homotopy
equivalences:

(i) 1(Bx.11) = 1(Bx.),
(i) 1(Bx,3) = X (B)),
(i) 1(Bx,22) = 2(I (Bx,2) and
(iv) 1(Bx.2,1) is simple-homtopy equivalent to a point, that is, contractible.

Proof. In the Hock systemBy kh let X1, ..., Xk denote the vertices of the first path added
and letys, ..., yn denote the vertices of the second path added. To prove (i) comtract
andy; and denote the corsicted vertex also by;. By Lemma 3.2he resulting complex
is the indpendence complex dx 1.

To prove (ii) contractx; and x3 and denote the corcted vertex also bys. Using
Lemma 3.2again yields that the resulting complex is the independence complex of the
following block system otV U {x2, X3}. Theblocks are the blocks df and the tvo blocks
{X, X2, X3} and{xz, x3}. Theblock {Xx, X2, X3} contains{xz, x3}; herce it may be discarded
without changing the independee complex. Thendependence complex of the resulting
block system is isomorphic td'(1 (5)).

To prove (iii) contractx andxp, anddenote the contracted vertex ly. An agument
similar to the proof of (ii) shows that the resulting compléx is identifiable with the
independence complex B € B : x ¢ B} U {{x1, X2}, {y1, Y2}} on V \ {x}. Observe
now that the same contraction applied|t@y 2) yields the independence complex
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of {B € B: x & B} U {{xg,x2}} onV \ {x}. The statment now follows from the
straghtforward observation that, = X' (Aq).

Finally, to prove (iv) contract agaix andxy, anddenote the contracted vertex Ry.
The resulting complex is the independence complex of a block systém\dr} in which
no block containy;. Thus we obtain a cone with apgx. O

As indicated at the end @ection 6 we are now ble to determine the homotopy type
of the smplicial complex of sparse sets on the §Et. . ., n} precisely.

Corollary 6.3. The simplicial complex consisting of all sparse sets {&n...,n} is
contractible if n = 1 mod 3 Otherwisethe conplex is homotopy equivalent to a
L(n — 1)/3]-dimensional sphere.

Proof. The simplicial complex in the statement is the independence complex of a path
on n vertices. By Proposition 6.2 part (ii), it is enough to verify the statement for
n=123 0O

The simplicial complex of sparse sets was previously studied by Billera and Myers
[2], and Kozlov [L4]. Billera and Myers consider sparse sets as a special canteofal
ordersand they prove that such an order in general is non-pure shellable in the sense of
Bjorner and Wachs3] and hence homeomorphic to a wedge of spheres. Kozlov proved
Corollay 6.3 as a special case of results complexes of directed tree$4, Proposition
4.5]. Kozlov studies complexes whosgerticesare edges of some directed graph, and faces
are directed forests. The cirits (minimal non-faces) in shccomplexes are particularly
nice: asetey, ..., &} isacircuitif and only if{es, . .., ex} forms a directed cycle in some
order ork = 2 ande; ande; have the same target vertex. Therefore the study of such
complexes from the non-face perspective might yield interesting results.

Note that the simplicial complex of sparse sets is not a pure simplicial complex in
general. It is easy to show that tHenensions of facets range betwdén+ 2)/3] — 1 and
[n/2] — 1. Thus this simplicial complex is pure only whan< 2 or whenn = 4.

7. The dominance complex of a forest

Let G be a graph on the vertex sét A dominance setf the graphG is a sibsetS of
vertices such that each vertextine graph is either in the s&or adjacent to a vertex in
the setS. Observehat if Sis a dominance set and the SetcontainsS thenT is also a
dominance set. Thus the complements of dominance sets are closed under inclusion. Hence
we defire thedominance complexf a graphG to be the simplicial complex consisting of
the faces

Dyv(G) ={o CV :V\ o isadominating set o&}.

Theorem 7.1. The dominance complex of a forest F is simple-homotopy equivalent to a
sphere. In fact, the dominance complex @) is constrictive.

For each vertex of the grap® let N[v] denote the set of all neighbors oftogether
with the vertexv. Thedominance compleBy (G) may be described as the independence
set of theblock system{N[v] : v € V}. In fact, the set containsN[v] for some vertex
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if and only if the complemenV \ o is not dominatig the vertexv. In gereral, the block
system{N[v] : v € V} is not branching. This can be seen using a path consisting of six
vertices.

We will prove a more general statement thEmeorem 7.1seeTheorem 7.2In order to
proceed, we need to introduce thetina of a forest on a partition. Let bea partition of
the vertex se¥, thatis,m = {S, ..., &} isa wllection of non-empty disjoint subsets\éf
whose union i§/. Theusud terminology is to call the subsets of the partitiodlocks. We
will follow this terminology in this sectiond call the blocks in a block system blocking
sets. LetF bea forest on the set of blocks of the partitian We wite S~ T if SandT
are two adjacent blocks in the forest. Define the neighborhood of a Batk as the set

N[S] = SU U T.
S~T

Define the dominance compl&y (F) as the independence complex
Dv(F) = Iv({N[S]: Se n}).
Now we can introduce a stronger statement:

Theorem 7.2. Let F be a forest on a partition. Then the dominance complex/DF) is
constrictive and it is simple-homotopy equivalent to a sphere.

In order to work with forests on partitions we need to introduce some notationt Let
be a prtition of the setv and letF be a forest onr. Let B andC be two non-empty
disjoint sets that are aisdigoint from the setV. Let F U {B} denote the forest where
we add the seB as a new block to the partitiom and let this block be an isolated node
in the forest. Similarly, letr U {B, C} be a forest where we add two singleton blocks
to the forestF. Let F U {B ~ C} be a forest where we add the two nod@sand
C, and we atich them with an edge together. L&tbe a block ofr. Let By, ..., B
be disjoint non-empty sets that are also disjoint from the verte¥/sdtet Fa.p, .. B,
denote theforest on the partitionr U {By, ..., A} where we add the adjacency relations
A ~ By, By ~ By, ..., Bk—1 ~ Bxk. Similarly, let Fa ;... B:C,.....c,, dENOte the forest
(FaA:B,,...BWAC,,....Cm that is, we #tach two paths to the forest at the nodeA.

Similar to Proposition 6.2s the following one for dominance complexes of forests on
patitions:

Proposition 7.3. We hawe the following list of one equality and five simple-homotopy
equivalences:

() D(F U{A~ B}) = D(F U{AUB}),

(i) D(F U{AU{u}, BU{v}})) = D(F U{AUBU {w}}),
(i) D(Fa:Buuy:cup)) = D(FaBuCUw)),
(iv) D(Fa:Bu{u);c,DU)) = D(FaA BuCUDUW)):

(v) D(Fa;B,cufuy;pupv).E) = D(Fa BUCUDU{w),E) @nd
(vi) D(Fa;Buu).c,Du)) = D(Fa.BuCUDU{W})-

Proof. To prove statement (i), observe that in the left hand side forest the neighborhoods
of the Hocks A and B are the same, that iNN[A] = N[B] = A U B. But this is the
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neighborhood of the bloclk U B in the right had side forest. Thus the two dominance
complexes are the same.

In each statement (ii) through (vi) observe ttat v} do not belong to any minimal
non-face. Hence we may contract the vertiogesnd v to obtain the new vertex. This
contraction alone yieldthe right hand side in each of these five statements.

For instance, let us consider statement (v). Observe that the neighborhoods essential to
usareN[CU{u}] = BUCU{u}, N[E] = DUEU{v},andN[A] = AUBUDU{v}US,
where S is the neighborhood ofA in the orighal forestF. We do reed to consider the
neighborhood®N[B] andN[D U {v}] since hey containN[B] respectivelyN[D U {v}].
Contractingu andv we obtain the following two blockig sets in theeontracted complex:
BUCUDUEU{w}andAUBUCUDU{w}US. IntheforestFa sucupuiuw},E these
two sets are the neighborhooti§ E] andN[A] proving gatement (v). O

Proof of Theorem 7.2. We prove the statement by induction on the number of blocks in
the underlying partition. The inductiorabis is when there is only one blodk in the
patition. Then we have that the dominating complex is a sphere of dimep&ion 2.

If there is more than one block in the pauiti, one of the rules (i) through (vi) applies
and we obtain a smaller forest. Observe that when we are contracting, one of the contracted
vertices is in a unique circuit. Hence the dominance complex is constrictive.

Lemma 7.4. The dominance complex of a path on k vertices is simple-homotopy
equivalent to a sphere of dimensiok/2] — 1. More generally, if r is a partition of an
n-element set into k blocks and F is a path on these k blocks the dominance coniplex D
is simple-horatopy equivalent to a sphere of dimension rik/2] — 1.

Proof. We prove the more general statement by inductionkohe induction basis is

k < 2 and in this case the dominance complex is the boundamgnef 1)-dimensional
simplex, that is, it is &n — 2)-dimensional sphere. Whén= 3, apply rules (iii) and (i) to

obtain a path of one node and one underlying vertex less since we contracted two vertices.
Whenk > 4, apply rule (vi) to obtain a path with two nodes and one underlying vertex
less. Observe that the quantity- [k/2] — 1 remains invariant under these transformations
and hence it is the dimension of the sphere. The first statement of the lemma follows by
considering the case when=k. O

Observe that the dominance complex in this lemma can also be viewed as the
independence complex of a family of intervals [dnn]. Whenn = Kk, the irtervak are
[1,2], [2,4], [3,5],...,[n—3,n— 1] and[n — 1, n].

8. The Alexander dual of a constrictive complex

We now onsiderthe Alexander duabr blocker of a simgicial complex. In order to
make its definition work properly, we prefer to drop the requirement that a singleton has
to be a face from the definition of a simplicial complex, as it is done7jnSedion 2].

A generdized (abstract) simplicial complex on a vertex seV is simply a family of
subsets oV, closad under inclusion. If we think of the subsets\éfas a Boolean algebra,
then a simplicial complex is lawer idealof this partially ordered set. The notions of edge
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contraction, elementary copiae, coning and suspension may be generalized to generalized
abstract simplicial complexes in a straightforward manner. In this section only, by the term
“simplicial complex” we will always mean “gneralized abstract simplicial complex”.

For a gmeralized abstract simplicial complex define the set ofjenuine verticesas
vert(A) = {v € V : {v} € A}. Observe tht there are two simplicial complexes on the
empty vertex set. First there is = {@}. This simplicial complex should be considered
as a(—1)-dimensional sphere. Second, there is the comglex= @. This mmplex
is contractible since itsiobtained from the pointd, {v}} by a collapse and should be
considered as &-1)-dimensional simplex.

Definition 8.1. Let A be a simficial complex on the vertex s&t. We define thé\lexander
dualof AasD(A)={c CV:V\o & A}

A simplicial complex A is a lower ideal in the Boolean algebBs, generated by the
setV. The comfementBy \ A in the BooleanalgebraBy is an upper ideal. Finally,
the conplements of the sets iBy \ V form again a lower ideal, namely the Alexander
dual. Thus a facet in the complexA corresponds to the circuit \ o in the Alexander
dualD(A). Similarly, a circuit B in the complexA corresponds to the facst\ B in the
Alexander dual. A free face € A is an element of the lower ideal contained in a unique
maximal element of A. If || = |o| — 1, thenthe collectionD(A) U{V \ o,V \ t}isa
lower ideal. This reaming provides a combinatorial proof of the following statement.

Proposition 8.2. LetA andA’ be simplicial complexes on the same vertex set V. Ttien
may ke obtained fromA via an elementary collapse if and onlyZif(A) may ke obtained
from D(A") via an elementary collapse.

This is property 7 of the Alexander dual in Kalai's pap&8]| He also notes that is
isomorphic toA’ if andonly if D(A) is isomophic toD(A’) and that

D(D(A)) = A (8.4)

for every simplicial complex. The same fact is also noted by Kahn et al. on p. 3Q2)in [
and cited in a setting of PL-manifolds by Dong B Lemma 10]. Repeated application of
Proposition 8.%ields the following theorem.

Theorem 8.3. Let A and A’ be simplicial complexes on the same vertex set V. Thian
simplehomotopic taA’ if and only ifD(A) is simplehomotopic taD(A").

From a topological viewpoint, the geometric realization D{A) is homotopy
equivalent to the set difference between the geometric realization of the boundary of the
simplex with vertex seV and the geometric realization of the compléax From this
interpretation and using the well-known Alexander Duality Theorem one can prove that
A is ahomology sphere if and only if its Alexander dual is. See the papgts][for
detals.

Remark 8.4. Since we allowlie vertex seV of the mplicial complexA to be a larger set

than the sebf genuine vertices verd), the natural question arises of how the Alexander
dual changes when we enlarge the vertex set with additional non-genuine vertices. This also
seems to be an issue that has not been addressed explicitly in the literature. It is relatively
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easy to prove the following. Let’ be the simplicial complex obtained from by adding

a new (non-genuine) verte¥ . Then he combinatorial Alexander dual @f' is homotopy
equivalent to the suspension of the combinatorial Alexander dual éferce either both
Alexander duals are homotopy equivalent to a single vertex or a sphere, or none of them
are.

As a mnsequence dfemma 4.2andTheorem 8.3ve obtain:

Corollary 85. The Aexander dual of a constrictive simplicial complex is simple
homotopic to a single vertex or the boundary complex of a sphere.

We may use tis result to obtain more classes of simplicial complexes that are
contractible or homotopy equivalent to sphertn paticular, as the Alexander duals of
Theorems 4.45.3and7.1we obtain the following four corollaries.

Corollary 8.6. LetZ be a family of intervals on the sgt, n]. Then he simplicial complex
A7z ={o:0 €[, n]\ I forsome le T}
is simple-horatopic to a single vertex or to a sphere.

This is [1, Theorem 3] and it is equivalent to a result of Katri] on intervd gererated
lattices which was rediscoveténdependently by Linussodp, Theorem 15.1].

Corollary 8.7. LetB = {By, ..., By} be a branching block system on a vertex set V. Then
the simplicial complex

A ={o:0 CV\ B for some Be B}
is simple-horatopic to a single vertex or to a sphere.
As a corollary to the previous corollary or @orollary 6.1we have the nebdual result.

Corollary 8.8. Let F be a forest on the vertex set V. Then the simplicial complex
consisting of all subsets of V that do not contain all the edges, that is,

A={o:0 CV\{u,v}forsomew e E(F)},
is simple-horatopic to a single vertex or to a sphere.

Corollary 8.9. Let F be a forest on the vertex set V. Then the simplicial comfslex
consisting of all subsets of V that are not dominating, that is,

Ag ={o :0 €V \ N[v] for somev € V},
is simple-horatopy equivalent to a sphere.

Note thatAr is the indpendence complex of the collection of dominating sets of the
forest.

9. Concluding questions

Given a graphG what can be said about the topology of the independence complex
| (G)? As was pointed out to us by a referee, the first barycentric subdivision of a simplicial



922 R.Ehrenborg, G. Hetyei / European Jowoal of Combinatorics 27 (2006) 906-923

complex is the independence complex of the complement of the comparability graph of
the underlying face poset. Therefore every simplicial complex arising as the barycentric
subdivision of aCW complex may be represented as the independence complex of a graph.
As a onsequence, the independence compliea graph may have any homotopy type.

This makes the question of whigitaph theoretiqroperties imply homotopy equivalence

to a dngle vertex or a sphere even more interesting. The same question may be raised about
the topology of the dominance complé&x(G).

Given a forestF we know that its dominance complex is homotopy equivalent to a
sphere. Thus the dimension of this sphere is an invariant of the forest. Is there a simple
way to conpute this invariant? Simildy, is there a simple way to determine whether the
independence complex of a forest is contrdetdnd if not determia thedimension of
the essciated sphere? One suggestion is to consider the algorithms occurring in the work
of Contenza$], Farber P] and Mynhardt L6]. Moreover, can our homotopy results be
extended to other classes of graphs, for instance, strongly chordal graphs?

Other questions that occur naturally are: Can the class of constrictive simplicial
polytopes be classified? When is a constrictive simplicial complex non-pure shellable?
For this extension of the notion of shelling see the paper by Bjérner and Waths [

The Stirling complexis the simplicial complexA,, on the vetex setV, = {@, ]) :

1 <i < j < n} where the minimal non-faces (circuits) are the péiisj), (i, k)} and
{G,K), (j, K}, wherei, j andk range over 1< i < j < k < n. Observethat the Stirling
complex is the independence complex of a graph, since all of its circuits have cardinality
2. Another way to describe this complex is kgymg that the collection of all faces is the

sd of all rook placements on the boaxg,. Thenumber ofk-dimensional faces is given by

the Stirling number bthe seond kindS(n, n — k — 1); see [L7, Proposition 2.4.2]. What

can be said about the homotopy type of the Stirling complgR
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