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Abstract

Weintroduce a large self-dual class of simplicial complexes for which we show that each member
complex is contractible or homotopy equivalent to a sphere. Examples of complexes in this class
include independence and dominance complexes of forests, pointed simplicial complexes, and their
combinatorial Alexander duals.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we introduce a large class of abstract simplicial complexes for which
it is possible to show purely combinatorially that each of its members is contractible
or homotopy equivalent to a sphere. We call the complexes of this classconstrictive
complexes. In general it is hard to say whether the geometric realizations of two abstract
simplicial complexes are homotopic, since a homotopy equivalence between topological
spaces may preserve little ofthe underlying discrete structure. There is however a notion
of homotopy equivalence, calledsimple-homotopyequivalence, that is close enough to the
discrete world to have a combinatorial meaning. Simple-homotopy equivalence is defined
as a sequence ofelementary collapsesand their inverses. These operations, studied by
Kalai in [13] andby Kahn et al. in [12], are combinatorially defined and induce a homotopy
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equivalence of simplicial complexes. Another combinatorial operation that clearly does not
change the homotopy type iscontracting an edgewhenever the combinatorial structure
allows it. It is essential to notice that edge contraction may be realized by a sequence
of elementary collapses and inverse elementary collapses; we will prove this in the
preliminary Section 2.

The basic example motivating our research was the simplicial complex ofsparsesubsets
of the set{1, 2, . . . , n}, i.e., the simplicial complex whose faces are the subsets containing
no pair of consecutive integers. For alln, this complex is homeomorphic to a wedge of
spheres by the results of Billera and Myers [2] on interval orders, and it is contractible
or homotopy equivalent to a sphere as a consequence of Kozlov’s theory of complexes of
directed trees [14].

The class of constrictive simplicial complexes contains all complexes of sparse sets, and
includes many other important examples. Constrictive complexes are formally defined in
Section 4. They are closed under contracting an edge, and their simplest examples are the
empty set, and boundary complexes of simplices. The structure of constrictive complexes
is best understood in terms of the structure of non-faces of simplicial complexes; this
approach to edge contractions is developed inSection 3. Using the non-face approach it
is almost immediate from the definition of a constrictive complex that it must be homotopy
equivalent to a ball or to a sphere. What turns out to be harder to show is that many
simplicial complexes arising in a combinatorial or graph theoretic setting are actually
constrictive. Our examples includebranching complexeswhich generalize the notion of
the complex of independent sets of vertices in a forest of trees, dominance complexes of
forests, andpointed complexes, which appear in the work of Ehrenborg and Steingrímsson
[8] on playing Nim on a simplicial complex.

Branching complexes are shown to be constrictive inSection 5and an algorithm for
calculating the exact homotopy type of the independence complex of a forest is described
in Section 6. As a consequence we obtain the exact homotopy type of the complex of
sparse subsets of{1, 2, . . . , n} as a function ofn. The dominance complex of a forest
is defined as the family of complements of its dominating sets and it is shown to be
constrictive inSection 7. Theproof indicates a method for calculating the actual homotopy
type.

Finally, in Section 8 we revisit the notion of the combinatorial Alexander dual,
introduced by Kalai in [13]. As it was already observed by Kalai, an elementary collapse
induces an elementary collapse at the level ofdual complexes, but it is not clear in general
that the combinatorial Alexander dual of a complex that is homotopy equivalent to a ball
or sphere would also be homotopy equivalent to a ball or sphere. This is true, however,
if we restrict our attention to constrictive complexes: it turns out that the combinatorial
Alexander dual of a constrictive complex is constrictive. The only difficulty in proving this
statement is in establishing the fact that the combinatorial Alexander dual of the boundary
complex of a simplex is constrictive, since it is pointed. Our theorem allows us to state the
dual of every result in the preceding sections.

It is not clear to us what would be the “best” approach to proving homotopy equivalence
to balls or spheres for simplicial complexes in general. The widely known method of
shellings, even in its non-pure form as introduced by Björner and Wachs [3], seems to
be more suitable for studying the homeomorphy rather than the homotopy type, and it is
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worth noting that for the class of constrictive simplicial complexes, a more elementary
approach than discrete Morse theory [10] suffices.

2. Preliminaries

Definition 2.1. An abstract simplicial complex� on a finite vertex setV is a family of
sets{σ ∈ � : σ ⊆ V} satisfying the following properties.

(i) {v} ∈ � for all v ∈ V .
(ii) If σ ∈ � then every subsetτ ⊆ σ belongs to�.

The elements of� are faces; the elements ofV are calledvertices. By property (i),
giving the set of faces determines the set ofvertices. Hence we may identify an abstract
simplicial complex with its set of faces. Thedimensionof a faceσ is |σ | − 1, maximal
faces are calledfacets, and one-dimensional faces are callededges.

Given asubsetU ⊆ V of the vertex set, therestriction � |U of the simplicial complex
to U is the simplicial complex with vertex setU and face set� |U = {σ : σ ∈ �, σ ⊆ U}.
Another important notion is the link of a faceσ in the complex�, defined by

link�(σ ) = {τ ⊆ V \ σ : τ ∪ σ ∈ �}.
Every abstract simplicial complex has astandard geometric realization. We take a basis

{ev : v ∈ V} in R
|V | and the union of the convex hulls of sets{ev : v ∈ σ } for eachσ ∈ �.

Homotopic or homeomorphic properties of a finite simplicial complex are the same as
those of itsgeometric realization.

Definition 2.2. Wecall an edge{u, v} of a simplicial complex� contractibleif every face
σ ∈ � satisfying{u} ∪ σ ∈ � and{v} ∪ σ ∈ � alsosatisfies{u, v} ∪ σ ∈ �.

If the edge{u, v} ∈ � is contractible, the contracted simplicial complex�/{u, v} is
constructed as follows:

– We remove the verticesu andv from the vertex setV and add a new vertexw.
– A setτ ⊆ V \ {u, v} ∪ {w} is a face of�/{u, v} if w �∈ τ andτ ∈ � or w ∈ τ and at

leastone ofτ \ {w} ∪ {u}, τ \ {w} ∪ {v} is a face of�.

To simplify our notation, the “new” vertex may be identified with eitheru or v; hence
we may talk of “contracting the edge{u, v} to u”, for example. It is visually straightforward
that contracting a contractible edge induces ahomotopy equivalence of the geometric
realizations.

A faceτ ∈ � is freeif it is contained in a unique facetσ . If |σ \τ | = 1 then the removal
of τ andσ is called anelementary collapse.

Definition 2.3. We call the simplicial complexes� and�′ simple-homotopicif there is a
finite sequence� = �1,�2, . . . ,�n = �′ of simplicial complexes such that for each in-
dexi at least one of�i and�i+1 may be obtained from the other by an elementary collapse.

Elementary collapses and simple-homotopy are well-studied topological notions. A
good reference is Cohen’s book [4] where, at the beginning of Chapter II, these notions are
introduced for finiteCW complexes. It is well known that simple-homotopy is a narrower
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equivalence relation than homotopy equivalence. In the literature of combinatorial papers
on the homotopy type of various abstract simplicial complexes it is also customary to cite
a (much later) paper of Kalai [13], which was one of the firstones to use this notion in a
combinatorial setting. M. Cohen calls the inverseof an elementary collapse anelementary
expansion; thecombinatorial literature seems to prefer the termanticollapse.

It is worth noting that simple-homotopy includes the possibility of edge contraction,
because of the following theorem.

Theorem 2.4. If the edge{u, v} is contractible in the simplicial complex�, then the
complex� and the contracted simplicial complex�/{u, v} are simple-homotopic.

Proof. Consider the set of faces

S = {σ ⊆ V \ {u, v} : σ ∪ {v} ∈ �, σ ∪ {u} �∈ �}.
Order this set S = {σ1, . . . , σm} such that σi ⊆ σ j implies that i ≤ j . (This may
be achieved, for example, by writing a list of the elements ofS in increasing order of
cardinality.) Let� j be the simplicial complex

� j = � ∪ {σi ∪ {u}, σi ∪ {u, v} : 1 ≤ i ≤ j }.
Note that�0 = � and that� j +1 is obtained from� j by an anticollapse. Moreover, if a
faceσ of the last complex�m containsv thenσ ∪ {u} ∈ �m. (In other words, using the
terminology ofDefinition 2.5below,the link ofv in �m, link�m(v), is a cone with apexu.)

Let us now order the faces in link�m({u, v}) = {τ1, . . . , τn} suchthatτi ⊇ τ j implies
i ≤ j . Let

Γ j = �m \{τi ∪ {v}, τi ∪ {u, v} : 1 ≤ i ≤ j }.
Evidently, Γ0 = �m and Γ j +1 is obtained fromΓ j by an elementary collapse. It is
straightforward to see thatΓn is the contracted complex�/{u, v}. �

Beyond edge contractions and elementary collapses there are two operations on
simplicial complexes which are not homotopy equivalences, but yield homotopy spheres
or balls:coningan arbitrary simplicial complex over a new vertexv, andsuspensionof
spheres or balls.

Definition 2.5. A simplicial complex� on a vertex setV is a conewith apexv ∈ V if
everyσ ∈ � satisfiesσ ∪ {v} ∈ �.

If a simplicial complex� is a cone with apexv then its geometric representation may
be contracted to the pointev. Every simplicial complex�′ may be extended to a cone by
adding a new vertexu to its vertex set, and the sets{σ ∪ {u} : σ ∈ �′} to the set of
faces. The resulting simplicial complex is denoted byu ∗ �′. The extrinsic and intrinsic
descriptions of the cone may be brought together by stating that a simplicial complex� is
a cone with apexv if andonly if � = v ∗ � ∣∣V\{v} .

Remark 2.6. Not only is the geometric realization of a coneu ∗ � contractible, but
contraction to a single vertex may be achieved by successively collapsing every pair of
facesσ andσ ∪ {u}. Hence a cone is also simple-homotopic to a single vertex.

Suspensionis more easily described the extrinsic way.
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Definition 2.7. Let � be an abstract simplicial complex on the vertex setV . The
suspensionΣ (�) of � is defined up to isomorphism by adding two new verticesu, v �∈ V
to the vertex set, and settingΣ (�) = {σ, σ ∪ {u}, σ ∪ {v} : σ ∈ �}.

Alternatively, a simplicial complex� is a suspension of a smaller simplicial complex,
if andonly if � ∼= Σ (� ∣∣V\{u,v} ) for some pair of vertices{u, v}. The following lemma is
well known.

Lemma 2.8. If � is contractible thenΣ (�) is contractible. If� is homotopy equivalent
to a sphere of dimension k thenΣ (�) is homotopy equivalent to a sphere of dimension
k + 1.

3. Edge contraction and non-faces

In our main results we focus on the homotopic properties of a simplicial complex�
in terms of itsnon-faces, that is,the family {A ⊆ V : A �∈ �}. A minimal non-face of
a simplicial complex is called acircuit. If there isa vertexv that is notcontained in any
circuit then the simplicial complex is a cone with apexv and thus contractible.

We call a collectionB = {B1, . . . , Bn} of non-empty subsets of a vertex setV a
block system. Theindependence complexof B overV , denoted byIV (B), is the simplicial
complex consisting of the faces

IV (B) = {σ ⊆ V : Bi �⊆ σ for all Bi ∈ B}.
The vertex set ofIV (B) is

V \
⋃

i
|Bi |=1

Bi ,

and hence in general we may assume that each blockBi has cardinality at least 2. Certain
operations on block systems may yield singleton blocks; at the level of the independence
complex this will simply mean that we remove the corresponding vertices from the vertex
set. InSection 8we will use a generalized definition of a simplicial complex, which will
make the exceptional treatment of singleton blocks unnecessary.

It is worth noting thatevery simplicial complex is an independence complex: it is the
independence complex of its circuits.

Let us rephrase edge-contraction in terms of non-faces. An edge{u, v} ∈ � is
contractible if for any non-faceA �∈ � containing{u, v}, either A \ {u} or A \ {v} is a
non-face. In the contracted complex,A ⊆ V \{u, v}∪{w} is anon-face if eitherw �∈ A and
A is anon-face in the original complex, orw ∈ A and bothA\ {w}∪ {u} andσ \ {w}∪ {v}
are non-faces in the original complex.

Lemma 3.1. An edge{u, v} ∈ � is contractible if and only if no circuit (minimal non-face)
contains{u, v}.
Proof. Assume that some circuitB contains{u, v}. Then neitherB \ {u} nor B \ {v} is a
non-face, and{u, v} cannot be contracted.
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Assume now that no circuit contains{u, v} and letA be an arbitrary non-face containing
{u, v}. SinceA cannot be minimal, it properly contains a circuitB. SinceB is a proper
subset of A, it avoids at least one ofu, v, and soeither A \ {u} or A \ {v} is a
non-face. �

Lemma 3.2. LetB be a block system on thevertex set V and let� = IV (B). Assume that
the edge{u, v} ∈ � is contractible to the vertexw. Then theresulting simplicial complex
is the independence complex of

B′ = {B : B ∈ B, B ∩ {u, v} = ∅}
∪ {{w} ∪ B′ ∪ B′′ \ {u, v} : B′, B′′ ∈ B, u ∈ B′, v ∈ B′′}

on the vertex set V\ {u, v} ∪ {w}.
Proof. We show that the non-faces of the contracted complex are exactly those subsets of
V ′ := V \ {u, v} ∪ {w} which contain some element ofB′.

Assume first that a setA ⊆ V ′ contains someB ∈ B that is disjoint from{u, v}. SinceB
is anon-face of the contracted complex, so isA. Assume next thatA ⊆ V ′ contains a union
of sets{w}∪B′∪B′′ \{u, v} for someB′, B′′ ∈ B satisfyingu ∈ B′, v ∈ B′′. ThenbothA\
{w}∪{u} andA\{w}∪{v} are non-faces in the original complex since the first one contains
B′ and the second one containsB′′. Hence A is anon-face in the contracted complex.

To prove the reverseinclusion, assume thatA is a non-face in the contracted complex.
If w �∈ A then A is also a non-face in the original complex, and it contains someB ∈ B
which obviously satisfiesB ∩ {u, v} = ∅. Finally, if w ∈ A thenboth A \ {w} ∪ {u} and
A \ {w} ∪ {v} are non-faces in the original complexand the first must contain a block
B′ ∈ B containingu; the second must contain a blockB′′ ∈ B containingv. �

4. Constrictive simplicial complexes

In this section we present a class of complexes which will be shown to be contractible
or homotopy equivalent to a sphere, using only edge contractions.Constrictivecomplexes
are defined recursively as follows.

Definition 4.1. A simplicial complex� on the vertex setV is constrictiveif the complex
� is the boundary of the simplex on the vertex setV or there is a vertexv in V belonging
to at most one circuit with one of the following properties:

(i) v belongs to no circuit; or
(ii) v belongs to a unique circuitB �= V and there is a vertexu �∈ B such that contracting

the edge{u, v} yields a constrictive complex.

Under the circumstances of condition (ii), the edge{u, v} is contractible byLemma 3.1,
since no circuitcontains bothu andv. UsingLemma 3.2, the contracted complex may be
described as the independence complex of a block system which is easily derived from the
non-faces of the original complex.

Lemma 4.2. A constrictive simplicial complex� is simple-homotopic to a single vertex or
to the boundary complex of a simplex.
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Proof. We proceed by induction on|V |. If � is the boundary complex of a simplex, then
there isnothing to prove. In case (i) ofDefinition 4.1the simplicial complex is a cone
with apexv thus, byRemark 2.6, it is reducible to a single vertex by a sequence of edge
contractions. In case (ii) we may apply the induction hypothesis.�

In this section we give two initial examples of constrictive complexes; further classes of
constrictive complexes will be explored inSections 5through7. The firstone isthe class of
pointedsimplicial complexes. They appeared in the work of Ehrenborg and Steingrímsson
[8]. We call a simplicial complex� pointedif every circuitC of � contains a vertexv that
does not belong to any other circuit of�. Call the vertexv of the circuit C the pointed
vertex ofC. UsingLemma 3.2one can prove the following.

Proposition 4.3. Let � be a pointed simplicial complexon n vertices with k circuits.
Then the complex� is constrictive. Moreover, if the vertex set V is the union of the
circuits C1, . . . , Ck then the complex� is simple-homotopy equivalent to an(n − k − 1)-
dimensional sphere.

Proof. If there is a vertexv that is not contained in any circuit then the complex� is
constrictive, and also homotopy equivalent to a point. Hence we may now assume that the
vertex setV is the union of the circuits. Take two circuits and contract their two pointed
vertices. Observe that this falls into case (ii) ofDefinition 4.1. The resultis a pointed
simplicial complex onn − 1 vertices andk − 1 circuits and where every vertex belongs to
at least one circuit. Proceed in this manner and we obtain a simplicial complex consisting
of n − k + 1 vertices and one circuit which consists of all the vertices. The independence
complex is the boundary of an(n − k)-dimensional simplex and hence is an(n − k − 1)-
dimensional sphere. We may also concludeby induction on the number of circuits that a
pointed simplicial complex is constrictive. �

Our next example isthe independence complex of a family of intervals on[1, n] =
{1, 2, . . . , n}. We assume that our vertex set is[1, n]. An interval I = [i , j ] ⊆ [1, n] is a
set{i , i + 1, . . . , j }. Here we allowi = j yielding a singleton as an interval.

Theorem 4.4. The independence complex of a family of intervals on[1, n] is constrictive.

Proof. Weproceed by induction onn. Thecasen = 1 is trivial. Since nested blocks may be
removed without changing the independence complex, we may assume that our family of
intervals is an antichain, that is, no intervalcontains another. Then our family of intervals
may be written as{[a1, b1], . . . , [ak, bk]} for some 1≤ a1 < a2 < · · · < ak ≤ n and
1 ≤ b1 < b2 < · · · < bk ≤ n satisfyingai ≤ bi for i = 1, 2, . . . , k. If bk < n then
the independence complex is a cone with apexv = n. Otherwisethe vertexv = bk = n
belongs to the unique circuit[ak, bk]. If ak = 1 then the entire vertex setis a circuit and we
have the boundary of a simplex. Ifak > 1 then consider vertexu = ak −1. The edge{u, v}
is contractible tou and the resulting simplicial complex is the independence complex of
the following blocks:

• intervals[ai , bi ] for i ≤ k − 1 satisfying bi < u, and
• intervals[ai , bi ] ∪ [ak, bk] \ {n} = [ai , n − 1] for i ≤ k − 1 satisfying bi ≥ u.
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Note thatai ≤ u always holds fori < k, sinceai < ak. Therefore we obtain the
independence complex of a family of intervals on[1, n − 1], and we may invoke the
induction hypothesis. �

We call a subset of{1, . . . , n} sparseif it doesnot contain two consecutive integers.

Corollary 4.5. The simplicial complex consisting of all sparse sets on{1, . . . , n} is
constrictive.

In fact, this is just the independence complex of the family of intervals
{[1, 2], [2, 3], . . . , [n − 1, n]}. For a more detailed discussion ofthis simplicial complex
and its homotopy type seeCorollary 6.3and the paragraphs thereafter.

5. Branching block systems

Definition 5.1. A branching block systemB = {B1, . . . , Bn} is a set ofblocks such that
for every{i1, i2, . . . , i k} ⊆ {1, 2, . . . , n} at least one ofBi1 ∩ Bi2, Bi2 ∩ Bi3, . . . , Bik ∩ Bi1
is contained in (and hence equal to)Bi1 ∩ Bi2 ∩ · · · ∩ Bik .

This definition may be rephrased as follows. Consider the graph whose vertices are
{i1, . . . , i k}, and for which {i , j } ⊆ {i1, . . . , i k} is an edge ifand only if Bi ∩ Bj properly
containsBi1 ∩ Bi2 ∩ · · · ∩ Bik . Then this graph contains nok-cycle.

Any subfamily of a branching block system is evidently a branching block system. In
particular, if Bi ⊆ Bj for somei , j ∈ {1, 2, . . . , n} then Bj may be removed from our
family, without changing the independence complex. We say thatBj is anested blockof B.

Proposition 5.2. A branching systemB = {B1, . . . , Bn} of at least two blocks either
contains a nested block or at least two blocks Bi , Bj suchthat

Bi �⊆
⋃
t �=i

Bt and Bj �⊆
⋃
t �= j

Bt .

In the proof of Theorem 5.3we needonly the existence of one such block, but
technically it is easier to prove the existence of two such blocks.

Proof of Proposition 5.2. Assume thatB contains no nested blocks. We prove by
induction on

∑n
i=1 |Bi | the existence of two blocks neither of which is contained in the

union of the other blocks.
As a consequence ofDefinition 5.1, Bi1 ∩ Bi2 ∩ · · · ∩ Bik is not empty whenever none

of Bi1 ∩ Bi2, Bi2 ∩ Bi3, . . . , Bik ∩ Bi1 is the empty set. Consider the following graphG. Its
vertex set is{1, 2, . . . , n} and{i , j } ⊆ {1, 2, . . . , n} is an edge ifand only if Bi ∩ Bj �= ∅.
By our observationG is a “forest of cliques”, in other words, every 2-connected component
of G is a clique. In fact, if there are two vertex-disjoint paths betweeni and j , then there
is also a cycle(i1, . . . , i k) containing both vertices, andBi1 ∩ Bi2 ∩ · · · ∩ Bik �= ∅ implies
that any unordered pair{i s, i t } is an edge.

Case 1: G is not 2-connected.
In this case after contracting each 2-connected component to a single vertex, we obtain a
forest with at least two vertices. Such a forest has at least two leaves or isolated vertices.
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Assume that{i1, . . . , i k} and{ j1, . . . , jl } are two different cliques that contract to a leaf
or isolated vertex. It is sufficient to show that at least one ofBi1, . . . , Bik is not contained
in the union of the remaining blocks, and then the same argument may be repeated for the
jt ’s. If k = 1 thenBi1 has non-zero intersection only with at most one other block, and that
block cannot contain it unless it is nested. Ifk is at least 2, then by our induction hypothesis
there are at least two blocksBir andBis suchthat

Bir �⊆
⋃
t �=r

Bit and Bis �⊆
⋃
t �=s

Bit .

Since the 2-connected component containingi r andi s contracts to a leaf or isolated vertex,
only at most one ofBir andBis may have a non-empty intersection with anyBj satisfying
j �∈ {i1, . . . , i k}. Theother one is not contained in the union of all the other blocks.

Case 2: G is 2-connected (and hence a clique).
In this caseB1 ∩ · · · ∩ Bn �= ∅. Considerthe block systemB′ = {B′

1, . . . , B′
n} where

B′
i = Bi \ (B1 ∩· · · ∩ Bn) �= ∅. The systemB′ is also branching and non-nested. Moreover∑n
i=1 |B′

i | is strictly less than
∑n

i=1 |Bi |. Hence we may apply our induction hypothesis.
If, say, B′

i is not contained in the union of the otherB′
j ’s then Bi is not contained in the

union of the otherBj ’s. �

Theorem 5.3. The independence complex of a branching block systemB = {B1, . . . , Bn}
is constrictive. As a consequence, the independence complex of a branching block system
is simple-homotopic to a single vertex or to a sphere.

Proof. We proceed by induction onn. The basis of the induction isn = 1. It is
straightforward to observe that the independence complexIV ({B1}) is constrictive.

If B contains a nested block, we may remove it without changing the independence
complex. Otherwise, as a consequence ofProposition 5.2, there isat least one block
not contained in the union of the others.Without loss of generality we may assume
Bn �⊆ ⋃n−1

i=1 Bi . Let v be an element ofBn \ (
⋃n−1

i=1 Bi ). Choose anm < n suchthat
Bm ∩ Bn is a maximal element of the family of sets{Bi ∩ Bn : i < n} ordered by inclusion.
(In particular, if Bn is disjoint from all the otherBi ’s, m may be any index less thann.)
SinceB has no nested blocks, there is a vertexu ∈ Bm \ Bn. The verticesu andv are
not contained in any minimal non-face of the independence complex, and hence they are
contractible to a single vertexw. By abuse ofnotation let us denote the new vertexw also
by u. UsingLemma 3.2, this identification allows us to describe the contracted simplicial
complex as the independence complex ofB′ = {B1, . . . , B′

n−1}, where

B′
i =

{
Bi if u �∈ Bi

Bi ∪ (Bn \ {v}) if u ∈ Bi .

It is sufficient to show thatB′ is a branching block system, and we are done by induction.
Consider a subset{i1, . . . , i k} of {1, 2, . . . , n−1} and assume first thatm �∈ {i1, . . . , i k}.

Since B is branching, two cyclically consecutive elements of the list(Bi1, . . . , Bik)

intersect inBi1 ∩ · · · ∩ Bik . Without loss of generality we may assume that

Bi1 ∩ Bi2 = Bi1 ∩ · · · ∩ Bik . (5.1)
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It is sufficient to show that

B′
i1 ∩ B′

i2 = B′
i1 ∩ · · · ∩ B′

ik (5.2)

also holds. Ifu ∈ Bi1 ∩ Bi2 thenu belongs to allBit ’s and Eq. (5.2) may beobtained from
(5.1) by joining the sameBn \ {v} to both sides. Ifu belongs to neitherBi1 nor Bi2 then we
have

B′
i1 ∩ B′

i2 = Bi1 ∩ Bi2 = Bi1 ∩ · · · ∩ Bik ⊆ B′
i1 ∩ · · · ∩ B′

ik

while the reverse inclusion obviously holds. Hence we may assume thatu belongs to
exactly oneof Bi1, Bi2; by cyclic symmetry we may assume thatu ∈ Bi1 \ Bi2.

Consider the following cyclic list of blocks:

(Bi1, Bm, Bn, Bi2, Bi3, . . . , Bik ). (5.3)

By the branching property forB, at least two cyclically consecutive blocks on this list
intersect in the intersection of all blocks on the list. IfBi j ∩ Bi j +1 is such an intersection
for somej ∈ {2, 3, . . . , k −1} then we may removeBi j from our list without changing the
intersection of all blockssince in that case we have

Bi j ∩ Bi j +1 ⊆ Bi1 ∩ Bi2 = Bi1 ∩ · · · ∩ Bik

and by the obvious reverse inclusionBi j ∩ Bi j +1 contributes the same set to the meet of
all blocks on the list asBi1 ∩ Bi2. Similarly if Bik ∩ Bi1 is equal to the intersection of all
blocks then we may removeBik from our cyclic list (5.3). Repeated application of this
observation yields a cyclic list of blocks containingBi1, Bm, Bn, Bi2 consecutively, with
the same intersection of allblocks on the list, and such that the only consecutive pair of
blocks intersecting in the intersection of all blocks on the list is eitherBi1 ∩Bm, or Bm∩Bn,
or Bn ∩ Bi2. The intersectionBi1 ∩ Bm containsu whichdoes not belong toBi2; hence we
are left with the other two possibilities. By the choice ofBm, the intersectionBm ∩ Bn

cannot be a proper subset ofBn ∩ Bi2, andhence we get

Bn ∩ Bi2 ⊆ Bi1 ∩ · · · ∩ Bik ∩ Bm ∩ Bn ⊆ Bi1 ∩ Bi2.

This implies

B′
i1 ∩ B′

i2 = (Bi1 ∪ (Bn \ {v})) ∩ Bi2 ⊆ Bi1 ∩ Bi2 = Bi1 ∩ · · · ∩ Bik ;
therefore

B′
i1

∩ B′
i2

⊆ B′
i1

∩ · · · ∩ B′
ik

and the reverse inclusion obviously holds.
We conclude our proof by describing the adjustments that have to be made to the above

argument ifm belongs to{i1, . . . , i k}. If the pair {i1, i2} found at the beginning of our
argument does not containm then the only adjustment to the above argument is at the
introduction of the cyclic list (5.3). There we will skip i j = m from the list (and keep the
item Bm occurring afteri1 and beforeBn). Finally, if m ∈ {i1, i2} then upon reaching the
assumptionu ∈ Bi1 \ Bi2 we must concludem = i1. Instead of the cyclic list (5.3) we start
out considering the list

(Bm, Bn, Bi2, Bi3, . . . , Bik)
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and keep removingBi j ’s for j > 2 until we get the shortest possible list with the same
intersection of all blocks, still containing the itemsBm, Bn, Bi2 consecutively. Again the
consecutive pair intersecting in the intersection of all blocks is eitherBm ∩ Bn or Bn ∩ Bi2,
and from here the argument is the same.�

6. The independence complex of a forest

A simple undirected graphG with no loops or parallel edges may be considered as a
block systemB where each block ofB is of the form{u, v} for some edgeuv in the graph.
Moreover, the independence complex ofB consists of all independent sets of the graphG.

When the graph is a forest then the associated block system is a branching block system.
Thus the following is a direct corollary ofTheorem 5.3.

Corollary 6.1. Let F be a forest on a vertex set V , that is, a graph without cycles. Then
the independence complex of F is constrictive and thus simple-homotopy equivalent to a
single vertex or to a sphere.

Proposition 6.2lets us recursively calculate the homotopy type of the independence
complex of a forest. LetB = {B1, . . . , Bn} be a block system on the vertex setV and let
x be a vertex inV . Let Bx,k denote the block systemB with a path of lengthk attached
to the vertexx. That is,Bx,k is a block system on the disjoint union of the setV and
{x1, . . . , xk} with the added blocks{x, x1}, {x1, x2}, . . . , {xk−1, xk}. Similarly, let Bx,k,h

denote the block systemB with two paths attached to the vertexx, one of lengthk and one
of lengthh. In our notation,Bx,k,h = (Bx,k)x,h.

Proposition 6.2. For a block systemB we have the following simple-homotopy
equivalences:

(i) I (Bx,1,1) ∼= I (Bx,1),
(ii) I (Bx,3) ∼= Σ (I (B)),
(iii) I (Bx,2,2) ∼= Σ (I (Bx,2)) and
(iv) I (Bx,2,1) is simple-homotopy equivalent to a point, that is, contractible.

Proof. In the block systemBx,k,h let x1, . . . , xk denote the vertices of the first path added
and lety1, . . . , yh denote the vertices of the second path added. To prove (i) contractx1
andy1 and denote the contracted vertex also byx1. By Lemma 3.2the resulting complex
is the independence complex ofBx,1.

To prove (ii) contractx1 and x3 and denote the contracted vertex also byx3. Using
Lemma 3.2again yields that the resulting complex is the independence complex of the
following block system onV ∪{x2, x3}. Theblocks are the blocks ofB and the two blocks
{x, x2, x3} and{x2, x3}. Theblock {x, x2, x3} contains{x2, x3}; hence it may be discarded
without changing the independence complex. The independence complex of the resulting
block system is isomorphic toΣ (I (B)).

To prove(iii) contract x andx2, anddenote the contracted vertex byx2. An argument
similar to the proof of (ii) shows that the resulting complex�2 is identifiable with the
independence complex of{B ∈ B : x �∈ B} ∪ {{x1, x2}, {y1, y2}} on V \ {x}. Observe
now that the same contraction applied toI (Bx,2) yields the independence complex�1
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of {B ∈ B : x �∈ B} ∪ {{x1, x2}} on V \ {x}. The statement now follows from the
straightforward observation that�2

∼= Σ (�1).
Finally, to prove (iv) contract againx andx2, anddenote the contracted vertex byx2.

The resulting complex is the independence complex of a block system onV \ {x} in which
no block containsy1. Thus we obtain a cone with apexy1. �

As indicated at the end ofSection 6, we are now able to determine the homotopy type
of the simplicial complex of sparse sets on the set{1, . . . , n} precisely.

Corollary 6.3. The simplicial complex consisting of all sparse sets on{1, . . . , n} is
contractible if n ≡ 1 mod 3. Otherwisethe complex is homotopy equivalent to a
�(n − 1)/3�-dimensional sphere.

Proof. The simplicial complex in the statement is the independence complex of a path
on n vertices. By Proposition 6.2, part (ii), it is enough to verify the statement for
n = 1, 2, 3. �

The simplicial complex of sparse sets was previously studied by Billera and Myers
[2], and Kozlov [14]. Billera and Myers consider sparse sets as a special case ofinterval
ordersand they prove that such an order in general is non-pure shellable in the sense of
Björner and Wachs [3] and hence homeomorphic to a wedge of spheres. Kozlov proved
Corollary 6.3 as a special case of results oncomplexes of directed trees [14, Proposition
4.5]. Kozlov studies complexes whoseverticesare edges of some directed graph, and faces
are directed forests. The circuits (minimal non-faces) in such complexes are particularly
nice: a set{e1, . . . , ek} is a circuit if and only if{e1, . . . , ek} forms a directed cycle in some
order ork = 2 ande1 ande2 have the same target vertex. Therefore the study of such
complexes from the non-face perspective might yield interesting results.

Note that the simplicial complex of sparse sets is not a pure simplicial complex in
general. It is easy to show that thedimensions of facets range between�(n+2)/3�−1 and
�n/2� − 1. Thus this simplicial complex is pure only whenn ≤ 2 or whenn = 4.

7. The dominance complex of a forest

Let G be a graph on the vertex setV . A dominance setof the graphG is a subsetS of
vertices such that each vertex inthe graph is either in the setS or adjacent to a vertex in
the setS. Observethat if S is a dominance set and the setT containsS thenT is also a
dominance set. Thus the complements of dominance sets are closed under inclusion. Hence
we define thedominance complexof a graphG to be the simplicial complex consisting of
the faces

DV (G) = {σ ⊆ V : V \ σ is a dominating set ofG}.
Theorem 7.1. The dominance complex of a forest F is simple-homotopy equivalent to a
sphere. In fact, the dominance complex DV (F) is constrictive.

For each vertex of the graphG let N[v] denote the set of all neighbors ofv together
with the vertexv. Thedominance complexDV (G) may be described as the independence
set of theblock system{N[v] : v ∈ V}. In fact, the setσ containsN[v] for some vertexv
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if and only if the complementV \ σ is not dominating the vertexv. In general, the block
system{N[v] : v ∈ V} is not branching. This can be seen using a path consisting of six
vertices.

We will prove a more general statement thanTheorem 7.1; seeTheorem 7.2. In order to
proceed, we need to introduce the notion of a forest on a partition. Letπ bea partition of
the vertex setV , that is,π = {S1, . . . , Sk} is a collection of non-empty disjoint subsets ofV
whose union isV . Theusual terminology is to call the subsets of the partitionπ blocks. We
will follow this terminology in this section and call the blocks in a block system blocking
sets. LetF bea forest on the set of blocks of the partitionπ . We write S ∼ T if S andT
are two adjacent blocks in the forest. Define the neighborhood of a blockS in π as the set

N[S] = S∪
⋃
S∼T

T.

Define the dominance complexDV (F) as the independence complex

DV (F) = IV ({N[S] : S∈ π}).
Now we can introduce a stronger statement:

Theorem 7.2. Let F be a forest on a partitionπ . Then the dominance complex DV (F) is
constrictive and it is simple-homotopy equivalent to a sphere.

In order to work with forests on partitions we need to introduce some notation. Letπ

be a partition of the setV and let F be a forest onπ . Let B andC be two non-empty
disjoint sets that are also disjoint from the setV . Let F ∪ {B} denote the forest where
we add the setB as a new block to the partitionπ and let this block be an isolated node
in the forest. Similarly, letF ∪ {B, C} be a forest where we add two singleton blocks
to the forestF . Let F ∪ {B ∼ C} be a forest where we add the two nodesB and
C, and we attach them with an edge together. LetA be a block ofπ . Let B1, . . . , Bk

be disjoint non-empty sets that are also disjoint from the vertex setV . Let FA;B1,...,Bk

denote theforest on the partitionπ ∪ {B1, . . . , Ak} where we add the adjacency relations
A ∼ B1, B1 ∼ B2, . . . , Bk−1 ∼ Bk. Similarly, let FA;B1,...,Bk;C1,...,Cm denote the forest
(FA;B1,...,Bk)A;C1,...,Cm, that is, we attach two paths to the forestF at the nodeA.

Similar toProposition 6.2is the following one for dominance complexes of forests on
partitions:

Proposition 7.3. We have the following list of one equality and five simple-homotopy
equivalences:

(i) D(F ∪ {A ∼ B}) = D(F ∪ {A ∪ B}),
(ii) D(F ∪ {A ∪ {u}, B ∪ {v}}) ∼= D(F ∪ {A ∪ B ∪ {w}}),
(iii) D(FA;B∪{u};C∪{v}) ∼= D(FA;B∪C∪{w}),
(iv) D(FA;B∪{u};C,D∪{v}) ∼= D(FA;B∪C∪D∪{w}),
(v) D(FA;B,C∪{u};D∪{v},E) ∼= D(FA;B∪C∪D∪{w},E) and
(vi) D(FA;B∪{u},C,D∪{v}) ∼= D(FA;B∪C∪D∪{w}).

Proof. To prove statement (i), observe that in the left hand side forest the neighborhoods
of the blocks A and B are the same, that isN[A] = N[B] = A ∪ B. But this is the
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neighborhood of the blockA ∪ B in the right hand side forest. Thus the two dominance
complexes are the same.

In each statement (ii) through (vi) observe that{u, v} do not belong to any minimal
non-face. Hence we may contract the verticesu andv to obtain the new vertexw. This
contraction alone yieldsthe right hand side in each of these five statements.

For instance, let us consider statement (v). Observe that the neighborhoods essential to
us areN[C ∪{u}] = B∪C ∪{u}, N[E] = D ∪ E ∪{v}, andN[A] = A∪ B∪ D ∪{v}∪ S,
whereS is the neighborhood ofA in the original forestF . We do need to consider the
neighborhoodsN[B] and N[D ∪ {v}] since they containN[B] respectivelyN[D ∪ {v}].
Contractingu andv we obtain the following two blocking sets in thecontracted complex:
B ∪ C ∪ D ∪ E ∪ {w} andA ∪ B ∪ C ∪ D ∪ {w} ∪ S. In theforestFA;B∪C∪D∪{w},E these
two sets are the neighborhoodsN[E] andN[A] proving statement (v). �

Proof of Theorem 7.2. We prove the statement by induction on the number of blocks in
the underlying partition. The induction basis is when there is only one blockA in the
partition. Then we have that the dominating complex is a sphere of dimension|A| − 2.

If there is more than one block in the partition, one of the rules (i) through (vi) applies
and we obtain a smaller forest. Observe that when we are contracting, one of the contracted
vertices is in a unique circuit. Hence the dominance complex is constrictive.�

Lemma 7.4. The dominance complex of a path on k vertices is simple-homotopy
equivalent to a sphere of dimension�k/2� − 1. More generally, ifπ is a partition of an
n-element set into k blocks and F is a path on these k blocks the dominance complex D(F)

is simple-homotopy equivalent to a sphere of dimension n− �k/2� − 1.

Proof. We prove the more general statement by induction onk. The induction basis is
k ≤ 2 and in this case the dominance complex is the boundary of(n − 1)-dimensional
simplex, that is, it is a(n − 2)-dimensional sphere. Whenk = 3, apply rules (iii) and (i) to
obtain a path of one node and one underlying vertex less since we contracted two vertices.
Whenk ≥ 4, apply rule (vi) to obtain a path with two nodes and one underlying vertex
less. Observe that the quantityn−�k/2�−1 remains invariant under these transformations
and hence it is the dimension of the sphere. The first statement of the lemma follows by
considering the case whenn = k. �

Observe that the dominance complex in this lemma can also be viewed as the
independence complex of a family of intervals on[1, n]. Whenn = k, the intervals are
[1, 2], [2, 4], [3, 5], . . . , [n − 3, n − 1] and[n − 1, n].

8. The Alexander dual of a constrictive complex

We now considerthe Alexander dualor blocker of a simplicial complex. In order to
make its definition work properly, we prefer to drop the requirement that a singleton has
to be a face from the definition of a simplicial complex, as it is done in [7, Section 2].
A generalized (abstract) simplicial complex� on a vertex setV is simply a family of
subsets ofV , closed under inclusion. If we think of the subsets ofV as a Boolean algebra,
then a simplicial complex is alower idealof this partially ordered set. The notions of edge
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contraction, elementary collapse, coning and suspension may be generalized to generalized
abstract simplicial complexes in a straightforward manner. In this section only, by the term
“simplicial complex” we will always mean “generalized abstract simplicial complex”.

For a generalized abstract simplicial complex� define the set ofgenuine verticesas
vert(�) = {v ∈ V : {v} ∈ �}. Observe that there are two simplicial complexes on the
empty vertex set. First there is� = {∅}. This simplicial complex should be considered
as a (−1)-dimensional sphere. Second, there is the complex� = ∅. This complex
is contractible since it is obtained from the point{∅, {v}} by a collapse and should be
considered as a(−1)-dimensional simplex.

Definition 8.1. Let� be a simplicial complex on the vertex setV . We define theAlexander
dualof � asD(�) = {σ ⊆ V : V \ σ �∈ �}.

A simplicial complex� is a lower ideal in the Boolean algebraBV generated by the
set V . The complement BV \ � in the BooleanalgebraBV is an upper ideal. Finally,
the complements of the sets inBV \ V form again a lower ideal, namely the Alexander
dual. Thus a facetσ in the complex� corresponds to the circuitV \ σ in the Alexander
dualD(�). Similarly, a circuit B in the complex� corresponds to the facetV \ B in the
Alexander dual. A free faceτ ∈ � is an element of the lower ideal contained in a unique
maximal elementσ of �. If |τ | = |σ | − 1, thenthe collectionD(�) ∪ {V \ σ, V \ τ } is a
lower ideal. This reasoning provides a combinatorial proof of the following statement.

Proposition 8.2. Let� and�′ be simplicial complexes on the same vertex set V . Then�′
may be obtained from� via an elementary collapse if and only ifD(�) may be obtained
fromD(�′) via an elementary collapse.

This is property 7 of the Alexander dual in Kalai’s paper [13]. He also notes that� is
isomorphic to�′ if andonly if D(�) is isomorphic toD(�′) and that

D(D(�)) = � (8.4)

for every simplicial complex. The same fact is also noted by Kahn et al. on p. 301 in [12],
and cited in a setting of PL-manifolds by Dong in [6, Lemma 10]. Repeated application of
Proposition 8.2yields the following theorem.

Theorem 8.3. Let � and�′ be simplicial complexes on the same vertex set V . Then� is
simple-homotopic to�′ if and only ifD(�) is simple-homotopic toD(�′).

From a topological viewpoint, the geometric realization ofD(�) is homotopy
equivalent to the set difference between the geometric realization of the boundary of the
simplex with vertex setV and the geometric realization of the complex�. From this
interpretation and using the well-known Alexander Duality Theorem one can prove that
� is a homology sphere if and only if its Alexander dual is. See the papers [7,13] for
details.

Remark 8.4. Since we allow the vertex setV of the simplicial complex� to be a larger set
than the setof genuine vertices vert(�), thenatural question arises of how the Alexander
dual changes when we enlarge the vertex set with additional non-genuine vertices. This also
seems to be an issue that has not been addressed explicitly in the literature. It is relatively
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easy to prove the following. Let�′ be the simplicial complex obtained from� by adding
a new (non-genuine) vertexV . Then the combinatorial Alexander dual of�′ is homotopy
equivalent to the suspension of the combinatorial Alexander dual of�. Hence either both
Alexander duals are homotopy equivalent to a single vertex or a sphere, or none of them
are.

As a consequence ofLemma 4.2andTheorem 8.3weobtain:

Corollary 8.5. The Alexander dual of a constrictive simplicial complex is simple
homotopic to a single vertex or the boundary complex of a sphere.

We may use this result to obtain more classes of simplicial complexes that are
contractible or homotopy equivalent to spheres. In particular, as the Alexander duals of
Theorems 4.4, 5.3and7.1weobtain the following four corollaries.

Corollary 8.6. LetI be a family of intervals on the set[1, n]. Then the simplicial complex

�I = {σ : σ ⊆ [1, n] \ I for some I∈ I}
is simple-homotopic to a single vertex or to a sphere.

This is [1, Theorem 3] and it is equivalent to a result of Kahn [11] on interval generated
lattices which was rediscovered independently by Linusson [15, Theorem 15.1].

Corollary 8.7. LetB = {B1, . . . , Bn} be a branching block system on a vertex set V . Then
the simplicial complex

� = {σ : σ ⊆ V \ Bi for some Bi ∈ B}
is simple-homotopic to a single vertex or to a sphere.

As a corollary to the previous corollary or toCorollary 6.1we have the next dual result.

Corollary 8.8. Let F be a forest on the vertex set V . Then the simplicial complex�
consisting of all subsetsσ of V that do not contain all the edges, that is,

� = {σ : σ ⊆ V \ {u, v} for some uv ∈ E(F)},
is simple-homotopic to a single vertex or to a sphere.

Corollary 8.9. Let F be a forest on the vertex set V . Then the simplicial complex�F
consisting of all subsetsσ of V that are not dominating, that is,

�F = {σ : σ ⊆ V \ N[v] for somev ∈ V},
is simple-homotopy equivalent to a sphere.

Note that�F is the independence complex of the collection of dominating sets of the
forest.

9. Concluding questions

Given a graphG what can be said about the topology of the independence complex
I (G)? As was pointed out to us by a referee, the first barycentric subdivision of a simplicial
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complex is the independence complex of the complement of the comparability graph of
the underlying face poset. Therefore every simplicial complex arising as the barycentric
subdivision of aCW complex may be represented as the independence complex of a graph.
As a consequence, the independence complexof a graph may have any homotopy type.
This makes the question of whichgraph theoreticproperties imply homotopy equivalence
to a single vertex or a sphere even more interesting. The same question may be raised about
the topology of the dominance complexD(G).

Given a forestF we know that its dominance complex is homotopy equivalent to a
sphere. Thus the dimension of this sphere is an invariant of the forest. Is there a simple
way to compute this invariant? Similarly, is there a simple way to determine whether the
independence complex of a forest is contractible and if not determine thedimension of
the associated sphere? One suggestion is to consider the algorithms occurring in the work
of Contenza [5], Farber [9] and Mynhardt [16]. Moreover, can our homotopy results be
extended to other classes of graphs, for instance, strongly chordal graphs?

Other questions that occur naturally are: Can the class of constrictive simplicial
polytopes be classified? When is a constrictive simplicial complex non-pure shellable?
For this extension of the notion of shelling see the paper by Björner and Wachs [3].

The Stirling complex is the simplicial complex�n on the vertex setVn = {(i , j ) :
1 ≤ i < j ≤ n} where the minimal non-faces (circuits) are the pairs{(i , j ), (i , k)} and
{(i , k), ( j , k)}, wherei , j andk range over 1≤ i < j < k ≤ n. Observethat the Stirling
complex is the independence complex of a graph, since all of its circuits have cardinality
2. Another way to describe this complex is by saying that the collection of all faces is the
set of all rook placements on the boardVn. Thenumber ofk-dimensional faces is given by
the Stirling number of the second kindS(n, n − k − 1); see [17, Proposition 2.4.2]. What
can be said about the homotopy type of the Stirling complex�n?
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