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Abstract 

We consider juggling patterns where the juggler can only catch and throw one ball at a time, 
and patterns where the juggler can handle many balls at the same time. Using a crossing 
statistic, we obtain explicit q-enumeration formulas. Our techniques give a natural combina- 
torial ~te~retation of the q-Stirling numbers of the second kind and a bijective proof of an 
identity of Carl&. By generaking these techniques, we give a bijective proof of a q-identity 
involving unitary compositions due to Haglund. Also, juggling patterns enable us to easily 
compute the Poincark series of the affine Weyl group A,,- 1. 

Nous considerons des configurations de jonglerie darts lesquelles le jongleur ne peut attraper 
ou lancer qu’une seule balle a la fois, ainsi que les ~nfi~rations oh le jongleur peut manipuler 
plusieurs balles a la fois. En considerant une statistique de croisements, nous obtenons des 
formules explicites de q&mmCration. Nos techniques fournissent des interpretations combina- 
toires nature&s pour les q-nombres de Stirling de deuxieme espke ainsi qu’une preuve bijective 
dune identite de Carlitz. Gkneralisant ces techniques, nous donnons une preuve bijective dune 
q-identite des compositions unitaires due a Haglund. Les configurations de jonglerie nous 
permettent aussi de calculer la strie de Poincare du groupe du Weyl affine &_ 1. 

1. Introduction 

Consider the pattern in Fig. 1. We can think of this picture as the pattern that 
juggling balls describe as they are juggled. The horizontal axis is the time axis, At each 
integer time point one ball is caught and then thrown. At time points 0,3,6, . . . each 

*Corresponding author. Address: Department of Mathemati~, ComeR University, White Hail, Ithaca, 
NY 14853-7901, USA; e-mail: readdy@math.comell.eddu. 
’ Partially supported by CRM. 
’ Postdoctoral fellows at LACIM, UQAM. 

0012-365X/96/$15.00 0 1996 Elsevier Science B.V. All rights reserved 
SSI)I 0012-365X(95)00258-8 



108 R. Ehrenborg, M. Reud~~~is~refe Mathematics 157 (1994) 107-125 

ball is thrown high enough so that it lands one time unit later. Similarly, at time points 
1,4,7, . . . each ball is thrown so that it lands two time units later, while at time points 
2,5,8, . . . each ball will land three time units later. Thus this pattern is periodic with 
period d = 3. In this pattern there are two balls since the arcs describe two infinite 
paths. 

In this paper we will enumerate periodic patterns like the one just described. 
Fig. 1 shows a pattern where the juggler can only catch and throw one ball at a time. 
We will also consider patterns where the juggler has the ability to catch and throw 
many balls at a time. See Fig. 2 for an example of such a pattern. Among jugglers this 
is called multiplex. We say that a juggling pattern is simple if the juggler can only catch 
and throw one ball at a time. 

We denote the pattern in Fig. 1 by the vectors x = (0, 1,2) and a = (1,2,3). The fact 
that there is one 0 in the vector x means that at times 0 mod d the juggler catches and 
throws one ball. If there were three l’s appearing in the vectors, this would mean that 
the juggler catches and throws three balls at times 1 mod d. The entries of the vector 
a indicate how far each ball is thrown, that is, when it will return to the juggler’s hand. 
Thus at time periods Xi modd the juggler throws a ball ai time units. The pattern in 
Fig. 2 is represented by d = 2, x = (0, 0, l), and 4 = (1,4,1). 

Buhler et al. [2] proved that the number of simple juggling patterns of period d and 
at most n balls is equal to nd. Their proof uses the fact that the number of permutations 
with k excedances is equal to the Eulerian number A(n, k + 1) [17, Proposition 
1.3.121. Stanley bijectified their proof [ 181. Using a completely different approach, we 
simultaneously generalize the nd result in two ways. We include juggling patterns with 
multiplex and give q-analogues of these results. 

Between time points 1 and 2 in Fig. 1, the paths of the two balls cross. We call this 
a crossing. Since the pattern is periodic, similar crossings appear between 4 and 5, 
7 and 8, etc. There is one more crossing, namely between time points 2 and 3. Thus we 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Fig. 1. A juggling pattern with d = 3, x = (0,1,2), and u = (1,2,3). 

0 I 2 3 4 5 6 7 8 9 10 II 12 13 14 

Fig. 2. A juggling pattern with d = 2, x = (O,O, l), and u = (1,4,1). 
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say that this pattern has two crossings. Define the weight of a juggling pattern to be 
q to the power of the number of crossings of the pattern. The q-analogue of the nd 
result, which is proved bijectively, is the following theorem: 

Theorem 1.1. The sum of the weight of simple juggling sequences, with period d and at 
most n balls, is equal to 

(1 + q + e-1 + q”-y. 

As a corollary to this theorem, we are able to easily compute the Poincare series of the 
affine Weyl group &_ f . 

The results for multiplex include a product of Gaussian coefficients, which is 
presented in Theorem 5.1. While studying the multiplex case, we came across a natural 
combinatorial interpretation of S[n, k], the q-Stirling numbers of the second kind, 
using intertwining numbers of blocks. This method can easily be shown to be 
equivalent to Garsia and Remmel’s [6] idea of obtaining the q-Stirling numbers from 
rook placements. We give a bijective proof of an identity of Carl&z [4] involving 
S[n, k] by contracting simple juggling graphs. 

The method of contracting simple juggling graphs may be extended to contracting 
multiplex juggling graphs. This enables us to prove a q-identity, due to Haglund [7]. 
Upon setting q = 1, this identity involves enumerating unitary compositions and is 
due to MacMahon [9]. 

Observe for a multiplex juggling pattern that at each time point the number of 
balls the juggler catches is equal to the number of balls he throws at that time 
point. In the last section of the paper, we enumerate patterns without this property 
(see Theorem 8.2). For this generalization of juggling patterns, we use two 
vectors x and y to describe such patterns. The vector x describes how many balls 
are thrown at each time point, while the vector y describes the number of balls 
caught. 

2. Definitions 

We say that two vectors u = (ul,uz, . . . ,u,) and u = (vl,uz, . . . , u,) are similar if 
there exists a permutation K ES, such that ui = unii) for all i = 1,2, . . . ,m. We write 
u N u when u and u are similar. 

Definition 2.1. A juggling triple (d,x,a) consists of a positive integer d, a vector 
x = (Xi,& .*. , x,,J of integers and a vector II = (aI, a2, . . . , a,,) of positive integers, 
such that the following two conditions hold: 

1. O<xi<d-1 foralli=l,Z ,..., m. 
2. (a I- x) mod d N x, where the mod d applies component-wise. 

We call d the period, x the base vector, and a the j~g~i~ sequence. 
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To a juggling triple (d,x, a) we associate the following directed multigraph G on the 
integers E. The vertex set of the graph is E and the directed edge set is given by 

Observe that all the edges are directed increasingly with respect to time. Moreover, 
the condition (a + X) mod d N x implies that for every vertex its outdegree is equal to 
its indegree. Hence we can decompose the graph into a finite number of edge-disjoint 
paths that are increasing. This composition is not unique. However, the number of 
paths is always the same. We call the number of edge-disjoint paths the number o~~~~~s 
of the juggling triple &,a). We denote this number by ball(d,x,a). 

Remark 2.2. It is easy to show that the number of balls of the juggling triple (C&X, a) is 
given by (l/d).(ul f a2 + f.= + Q. 

Let aj be equal to the outdegree at vertex j in the associated graph. That is, for 
0 <j < d - 1, aj is the cardinality of the set {i: Xi = j). We say that a juggling triple is 
a simple juggling triple if m = d and the base vector n is given by x = (0, 1, . . . , d - 1). 
This implies that (x0 = Q = .a. = @d-i = 1. Every vertex in the associated graph of 
a simple juggling sequence has outdegree and indegree one. The more general case, 
where the out and indegrees may be greater than one, is called multiplex. 

In the directed graph G we define a crossing to be a pair of two edges (x, y) and (u, r.$ 
such that x < u < y < V. We say that two crossings (xi,yl) and (ui,ui), and (x2,y2) 
and (u2, az) are equivalent if there exists an integer k such that 

Xl =x2 + k-d, y1=y2+k*d, ui=u2+k*d, and vl=v2+k*d. 

Define the number of external tossings to be the number of classes of equivalent 
crossings of the graph. 

Remark 2.3. The number of external crossings of the juggling triple (d,x,u) is 
explicitly given by 

+ Xi + fli - Xj - Uj - 1 

1 
d ]-P-;-%1* 

An internal crossing of a juggling triple (d,x, u) is a pair (i, j) such that 1 < i < j s m, 
Xi = x,, and ui > Uj. For example, the juggling triple (2, (O,O, 1), (1,4,1)} that appears in 
Fig. 2 has no internal crossings, whereas the juggling triple (2, (0, 0, 1), (4,1,1)) has one 
internal crossing. Observe that these two juggling triples have the same associated 
graph. No internal crossings occur for a simple juggling triple since all the entries of 
the base vector are different. The number of crossings of a juggling triple (d,x, a) is the 
sum of the number of external and internal crossings. We denote the number of 
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crossings of a juggling triple by cross@,w, a). We define the weight of a juggling triple 
(d,x,u) to be 4 to the power of the number of crossings, that is, qcrosa(d,r*4. 

Following the convention for q-analogues, we define [n] = 1 f 4 + I.. + @‘- ’ and 
[n]! = [1].[2] a.*[n]. The G aussian coejf)fcient, or q-binomial coe@cient, is given 

by 

[I 

bl! 
ii =[m]!+P-*]!’ 

A combinatorial inte~retation of the Gaussian coefficient, which will be used in the 
proofs of Theorems 5.1 and 8.2, is an identity due to ~h~~en~rger [13]. Let x and 
y be noncommutative variables, with the relation yx = q* xy. Then 

A 
(x + y)” = 

c[l ; 
. Xkyn-k. 

(1) 

k=O 

The coefficient of x’y’-’ is found by taking all monomials having k x’s and (n - k) y’s 
and sorting them to the form ’ x y n-k by replacing each occurrence of yx by 4 * xy. 
Notice that the power of q for a given monomial is equal to the number of ‘swaps’ that 
are made. 

3. Simple juggling 

We will now consider simple juggling and present the proof of Theorem 1.1. In this 
section the base vector will be (0, 1, . . . ,d - l), which we denote &. Also, let Id be the 
vector (1 1 \, f ;.. ,I). 

d 

Proof of Theorem 1.1, Consider the three cards in Fig. 3. Each card has three paths, 
and one of these paths goes through the time point (alias the juggler’s hand). By taking 
d such cards, placing them side-by-side, and repeating the pattern periodically, we 
obtain a picture of three balls going from the left to the right. Observe that if we do not 

Fig. 3. The three juggling cards CO, Cl, and Ct for simple juggling with at most three balls. 
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use the last card CZ, we will obtain a picture having (at least) one continuous 
horizontal line. For example, if we were to only use the first card Co, we would have 
a picture with two horizontal lines and below there is one ball being caught and 
thrown at every time point. Each of the horizontal lines corresponds to a ball ‘hanging 
in the air’. Hence, these are the cards to use to describe the number ofjuggling patterns 
with at most three balls. 

To be able to make this argument for at most n balls, we will have n different cards, 

say C0,G . . . , C,,_ i. On the card Ci the (i + l)st path, counted from below, goes 
down and touches the time point and then continues as the lowest path. The weight of 
a card will be 4 to the number of crossings that occurs on the card. Thus card Ci will 
have weight q’, 

There are nd different patterns we can make with d cards. The sum of the weights of 
all the different patterns are 

(1 +q+q?+*a- +q”-l)d=[n]d, 

since the sum of the weights of the n types of cards is 1 + 8 + q2 + a.q + q”-‘. It 
remains to show that these [nld patterns that we can construct with the cards are in 
a one-to-one correspondence with simple juggling triples. 

Clearly a pattern of d cards will be a simple juggling sequence of period d. Say that 
an edge (x, y) of a simple juggling pattern is crossed from the inside by an edge (u, V) if 
x < u < y < V. Let (x, y) be an edge in a juggling pattern constructed from cards. 
Observe that all the crossings of (x, y) from the inside will occur on the card that 

covers the time point y. 
Define the map @ from simple juggling triples to Nd by @(&, lid, a) = (f#+, (p2, . . . , #d), 

where 

$i = I{(u, U) E E(G): i - l<u<i-l+Ui<U)l. 

That is, #i counts the number of directed edges of the associated graph that 
crosses the edge (i - 1,i - 1 + ai) from the ‘inside’. For 0 <j < d - 1, let pj = +i 
where i - 1 + oi = j modd. Hence pj counts the number of crossings from the 
‘inside’ at the edge that goes to time point j. Thus to construct the simple juggling 
pattern corresponding to the triple (&,~,a), it suffices to use the cards 

C?@tC/W *** ,Cl(*_l- I3 

It follows from this proof that @ is a bijection between simple juggling triples of 
period d having at most n balls and the set (0, 1, . . . , n - 11”. The following identity 
also holds 

since the cards C,, + 1, Cmax+ 2, . . . , C,_, are not used in the pattern. The 
n-max- 1 paths on the top of each card in the pattern represents n - max - 1 balls 
hanging in the air. Thus the juggling pattern involves max + 1 balls. 
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4. Tbe aibe Weyl group &_ I 

We will now consider the affine Weyl group &_ i. For more detailed accounts, see 

cg, 141. 

Definition 4.1. Let &_ 1 be the group of bijections cr: Z -P Z under composition, 
where the bijections satisfy the following two conditions: 

1. a(i + d) = o(i) + d for all i, 
2. Ct= l(o(i) - i) = 0. 

This combinato~al description of 1;3d- 1 is due to Lusztig. $_ 1 is a Coxeter group, 
and when d Z 2 it is generated by the simple reflections so,sl, . . . ,sd_ r, where 

i 

k+l if k=imodd 

s#) = k - 1 if k z i + 1 modd 

k if kf i, i -t- 1 mod d. 

An element CT E &_ 1 may be written as a product of simple reflections. Define the 
length E(a) of the element cr as the smallest integer r such that one can write CJ as 
a product of r simple reflections. Observe that & is the one element group. 

Theorem 4.2. Let o be an element in &_ 1 and n a positive integer such that n > i - a(i) 
for atE i = 1,2, . . . , d. Form the sequence a = (a1,a2, . , , , ad), where ai = a(i) - i + n. 
Then (d, &,a) is a juggling triple with ball(d, &,a) = II and cross(d, 6&u) = 
(n - 1) * d - I(a). 

Proof. Since n > i - o(i) for all i = 1, . . . , d, we have ai = a(i) - i + n > 0 and hence 
the ai are positive integers. Because o(i + d) = a(i) + d and CT is a bijection, we know 

that (r permutes the congruence classes modulo d. Hence, we know that the two 
vectors it + & and & are SiIdar modulo d. Thus (d, Et,,, a) is a simple juggling triple. 
Directly we obtain 

1 d 
ball(d,&,a) =;isiE1 c (o(i) - i + n) = n. 

By induction on I(a), we prove the identity for the crossing number. If d is the 
identity element, then u = (n, n, . . . , n), and cross(d, a,$, a) = (n - 1) - d. Assume now 
that CT = z o sz, where I(a) > 1(r). By [14, Corollary 4.2.31 this is equivalent to 
z(i) < zfi + 1). Thus we have a(i) > a(i + 1). Let a be the juggling sequence derived 
from a, and let G be the associated graph. Similarly, let b be the juggling sequence and 
H be the graph derived from z. Observe that these two juggling sequences only differ 
in the entries i and i + 1. In other words, we have bi = ci+ 1 + 1, bi+ 1 = ai - 1, and 
bj = aj for j # i, i + 1. 
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We will now compare the crossings of the two graphs G and H. Since 
a(i) > a(i f l), we have that (i - 1, i - 1 f ai) and (i, i + ai+ 1) is not a crossing in G. 
But (i - 1,i - 1 + bi) and (i,i + bi+l) is a crossing in H, since z(i) < z(i + 1). 

If (x, y) and (u, V) is a crossing in G and x, uf i - 1, imod d, then it is also a 
crossing in H. If (i - 1, i - 1 + ar) and (x, y) is a crossing in G, then (i, i + bi+ 1) and 
(x, y) is a crossing in H. Similarly, if (i, i + ai+ 1) and (x, y) is a crossing in G, 
then (i - 1, i - 1 + bi) and (x, y) is a crossing in H. Thus the juggling graph H will 
have one more equivalence class of crossings than the graph G. Thus we conclude 
cross(d,&,u) = cross(d,&,6) - 1, and the induction is complete. q 

By Theorems 1.1 and 4.2 we obtain: 

Corollary 4.3. The Poincart series of the group &_. 1 is given by: 

c 4 
1 -q* t(@) - 

aEd,-1 (1 - q1* * 

Proof. Let P, be the subset of&-i defined by P, = (C EA*_~: n > max(i - a(i))). 
Then 

c4 
[n-l)~d-t(o) 

= (1 + q + .a. f@-‘)d-(l+q+*.* +q=-2)d, 
C7EP. 

which implies 

c t(o) = (1 + q + e.. + q”-“)* -(q +. s.. 

Cl =(~~-q*(l;~;l)l_ 

+ q”-‘)* 

UEP, 

Since Unr lP, = d *_ i , we obtain the result by letting n + co. q 

5. Multiplex juggling 

In this section we enumerate multiplex juggling patterns. Recall that oli is the 
outdegree (and indegree) at time point j in the associated graph of a multiplex juggling 
triple. Observe that when a0 = ai = .+e = ad-r = 1 we obtain Theorem 1.1, the 
simple juggling enumeration theorem. 

Theorem 5.1. The sum of the weight of juggling ~ples,.with period d, base vector x, and 
at most n balls, is equal to 

[CEJ*[:+[.a_,l* 

where aj = Card(i: xi = j) for j = 0, . . . ,d - 1. 
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Fig. 4. The 6 = (2) juggling cards for multiplex juggling with at most four balls at a time where the juggler 
catches two balls. Observe that the sum of the weights is [:I = 1 + q f Z-q2 + q3 + q’. 

Proof. The proof is based upon the same cards idea as in the proof of Theorem 1.1 
except that we will be using different decks of cards. The kth deck Dk will consist of(i) 
cards. For n = 4 the six cards in deck D2 are pictured in Fig 4. The cards in deck 
L& will show all possible ways to choose k balls out of the n balls in the air, have the 
juggler catch these k balls, then throw these k balls up so that they are placed in the 
lowest orbits. 

We will index the cards in the deck Dk by multisets M of cardinality k, where the 
entries of the multisets are integers between 0 and n - k. The card CM, where 
M=(rnl~rnmz<~~~ g mk), is the card where the ith lowest ball that the juggler 
catches has mi crossings. For example, in Fig. 4 we have the cards, reading from left to 

right, C~O,O~ C{O,Q C~O,ZI, C~I.I)~ C{IJ), and C{2,2t. The weight of a card is defined to 

be 4 to the power of the number of crossings that appear on that card. Hence the 
weight of card CH is qx-M_. By the combinatorial interpretation of the Gaussian 

coefficient given in Eq. (l), the sum of the weights in deck Dk is [;I. 
At time point i we will use deck D,,, which consists of (:J cards. Thus we are able to 

construct (,“,) +.e (,“_,) patterns having period d. The sum of the weights of all these 
patterns is 

We claim that there is one-to-one correspondence between these patterns and multi- 
plex juggling triples. Moreover, this correspondence is weight-preserving. 

Given a juggling triple (d,x,a), define Y(d,x,lr) = ($i, lC12, . . . , $,), where 

$i = I{(% ~1 o E(G): Xi < U < Xi + Ui < U>\ + I(i: 1 <j < i, Xi = Xj, LJj > Ui>l* 

Thus ${ is equal to the number of crossings from the inside of the edge (xi, xi + ai) plus 
the number internal crossings this edge has with other edges with a smaller index. 
Define the multiset Mj, where 0 < j < d - 1, by Mj = {$j: Xi + ai = j modd). 
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Fig. 5. The juggling triple d = 2, x = (0, 0, l), and u = (4,&i) constructed by cards. Observe the internal 
crossing that occurs. 

Observe that the cardinality of the multiset Mj is Ej. To construct the associated graph 

of the juggling triple (4x, a), use the cards C,, CMM1, . . . , CM+,. 

By this construction, the associated graph of a juggling triple is drawn so that each 
crossing will appear as far right as possible. That is, all edges that cross an edge (x,y) 
from the inside will do this just before the time point y. Moreover, this rule also 
applies to internal crossings. Hence the internal crossing must be drawn outside the 
time point where they occur. 

Now from a pattern constructed with juggling cards, we can obtain the associated 
juggling graph by reading off the edges, that is, where a ball gets caught and thrown. 
Also by keeping track of where the internal crossings appear, we will obtain the 
juggling triple. 0 

Fig. 5 illustrates one such situation when an internal crossing appears outside. 
Observe that this juggling triple has the same associated graph as the juggling triple 
in Fig. 2. 

6. q-Stirling numbers of the second kind 

The usual definition for the q-Stirling numbers of the second kind follows: 

Definition 6.1. The 4-S~ir~~ng numbers of the second bind, S[n,k], are defined by the 
recursion 

s[n,k] = #-r*S[n - l,k - l] + [k]*S[n - I,k], 

where n,k 2 1. When II = 0 or k = 0, define S[n,k] = 8n,k. 

The q-Stirling numbers of the second kind have been well-studied in the literature. See 
for example [5,6,10-12,191. Recall that the Stirling numbers of the second kind, 
S(n, k), are defined by the number of partitions of the set (1, . . . , n) into k blocks. In 
what follows, we give a combinatorial interpretation which extends the partition 
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model of the Stirling numbers of the second kind in a very natural way to its 
q-analogue. 

Let &[n] denote the set of all partitions of (1,2, . . . , rz} into k blocks. For two 
integers i and j define the interval int(i,j) to be the set 

int(i, j) = (n E Z: min(i, j) < n < max(i, j)>. 

Observe that the interval is symmetric in i and j, that is, int(i, j) = int( j, i). 

Definition 6.2. For two disjoint nonempty subsets B, C of ($2, . . . , n], define the 
intertwining number I@, C) to be the cardinality of the set ((b, c) E B x C: 
int(b,c)n(BuC) = 8). The intertwining number is independent of order, that is, 
z(B,C)=~(C,B).Forapartitionn={(B,,& ,..., B,}oftheset{1,2 ,..., n)definethe 
intertwining number r(n) to be 

z(n) = 
1 $i<: jck 

Since the intertwining number of two blocks is independent of their order, the 
intertwining number of a partition does not depend upon how the blocks are ordered. 

As an example, consider the partition a = ({I, 3,6), (2,4), (5)) in Fig. 6. The 
intertwining number of the two blocks (1,3,6) and (2,4} is 4, which is equal to the 
number of crossings between the solid line and the dashed line. Also the intertwining 
number of z is equal to 7, which is the total number of crossings in Fig, 6. 

volition 6.3. The q-Stirling numbers of the second kind, S[n, k], satisfy 

S[n, k] = f: q*@) (n 3 1 and k 2 l), 
x 

where the sum ranges OLW all partitions R into k blocks, that is, &[n]. 

By conditioning on the block in which the element n appears, we can easily derive the 
recurrence in Definition 6.1. 

Observe that the intertwining number of two disjoint blocks is greater than or equal 
to 1. Hence the intert~ning number of a partition K is greater than or equal to (i), 

123456 
Fig. 6. Computation of the intertwining number of the partition II = { { 1,3,6), {2,4), {S)). l(n) = I({ 1,3,6), 
f2,4)) + zf{i,3,6), (5)) + r({2,4), {53, = 4 + 2 f 1 = 7. 
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where k is the number of blocks of n. This implies the Stirling number S [n, k] is 
divisible by q(i). 

There is a natural bijection between partitions of (1,2, . . . , n> into k blocks, and 
rook placements of n - k rooks on the triangular board of shape (0, 1, . . . , n - 1). 

(This bijection is given after Corollary 2.4.2 in [17].) It is easy to see that the 
intertwining number of a partition is equal to the Garsia-Remmel statistic “inv’ of the 
corresponding rook placement under this bijection [6]. However, the intertwining 
number is different from the q-Stirling distributed set partitions statistics of Milne 
[ll], Sagan [12], and Wachs and White [19]. 

The following identity is due to Carl& [4]. It is a q-analogue of a well-known 
identity for Stirling numbers of the second kind. (See for example [17].) Milne proved 
this q-identity by using finite operator techniques on restricted growth functions [lo]. 
See also de Medicis and Leroux [S] for a combinatorial proof. 

Theorem 6.4 (Carlitz [4]). 

[nld = 2 S[d,m]*[m]!* [il. 
m=o 

Proof. The idea of the proof is to study simple juggling graphs of period d. We 
contract d consecutive vertices of the graph to form a multiplex juggling graph of 
period 1. Carlitz’s identity will follow by keeping track of what happens to the 
crossings in the graph under contraction. 

Let (d, 6&u) be a simple juggling triple. Observe that (d,&,a) does not have any 
internal crossings. By Theorem 1.1, we know that the sum of the weight of such 
juggling triples with at most n balls is [nld. Contract the vertices k-d, k*d + 
1 , **a, (k + 1)-d - 1 of the associated graph G into a new vertex k. We then obtain 
a graph associated with a juggling triple (1, O,,,, c). Observe that 1 < m < d, since some 
arcs will be contracted to arcs of length 0. Thus we remove them. Formally, this 
contraction is described by letting bi = [(aI + i - 1)/d J, and removing the zero 
entries from the sequence (bl,bz, . . . ,bd) t0 produce the juggling sequence c = 

(Cl,CZ, ‘1.) c,). Note that ball(d, ijd, a) = ball(l,O,,c). 
Observe that m edge-disjoint paths partition the vertex set (0, 1, . . . ,d - l> into 

m disjoint blocks. Thus this is a partition x with m blocks. Moreover, the intertwining 
number of n is the number of crossings that occur between time points 0 and d - 1. 

Now we see what happens to a crossing (x, y), (u, V) when the graph G is contracted. 
Four cases occur. First, if the vertices y and u are contracted together, then the 
crossing is counted by the q-Stirling number S[d, m]. In the three remaining cases, we 
may assume that y and u are not contracted together. If none of the vertices x, y, u, and 
u are contracted together, then the crossing remains an external crossing of (1, O,,,, c) 
and thus is counted by [$I. If x and u are contracted together, but not y and v, then 
the crossing becomes an internal crossing of (l,O,,c), and thus is counted by [$I. 
Finally, if y and D are contracted together, then we may view this as an inversion of 
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a permutation of M elements. The weight of all such inversions is counted by the 
factor [ml!. 0 

7. Unitary compositions 

In this section we use the techniques developed in Section 6 to prove another 
identity involving Gaussian coefficients. This identity will involve a generalization of 
the concept of a partition of a set, namely, unitary compositions of a vector. The 
number of unitary compositions, g&), was first studied by MacMahon [9, Article 
1343. A q-analogue of gt(a), &[a], and its connection with rook placements was 
recently studied by Haglund [A. We will define gk[a”J from a juggling perspective and 
obtain a bijeetive proof of the identity in Theorem 7.4. 

Definition 7.1. A composition of a vector a E Nd into k parts is defined to be a list of 
k nonzero VeCtOrS ul, Vz, . . . , Vk E Nd such that o1 -I- 02 + f.s i- Vk = ix. A COmpOSitiOn 

is unitary if no part has an entry larger than one. Denote by &(a) the number of 
unitary compositions of a into k parts. 

For example, there are two unitary compositions of (2,l) into two parts, namely 
(1,l) + (1,0) and (1,0) + (1,l); thus g2((2, 1)) = 2. Similarly there are three unitary 
compositions of (2,1) into three parts: (1,O) + (1,0) + (0, l), (JO) f (0,l) + (LO), and 
(0,l) + (1,0) + (l,O); hence g3((2, 1)) = 3. Also, there is a connection to Stirling num- 
bers of the second kind, namely gk ((1, 1, :. . ,1)) = k! - S(n, It). 

n 

We next define the concept of unitary compositions in terms of juggling. For 
a vector a = (~,a~, . . . , CC&) E Nd we denote [Iall = Cfzi a1 and z(a) by 

z(a) = (1, . . . ,1,2, ~ y I I ..;,5 ._*,$ ..;, , d)- 

@I a2 a, 

Definition 7.2 A unitary compositionui triple of a vector a = (fxr, a2, . . , , ad) E N d into 
k parts is a triple of vectors &,~,a), where each vector has length m = }/all + k, 
satisfying 

1. x = (&?(a)) andy = (z(a),(d + I)& where the operation is concatenation of two 
vectors. 

2. The entries of the vector u are positive integers less than or equal to d. 
3. II + x my, that is, the two vectors a + x and y have the same entries, 

Observe that vectors x and y only depend on a and k. 
As an example of this definition, consider the vector a = (2,1). There are two 

unitary compositional triples of a into two parts, each with x = (O,O, 1,1,2) and 
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y = (1, 1,2,3,3). The two unitary compositional triples have u-vectors equal to 

(1,1,1,2,1) and (1,1,2,&l). 

Similarly, there are three unitary compositional triples of a into three parts, which 
have u-vectors equal to 

(1,1>2,2,51), (1,2,1,2,2,1X and t&l, 1,2,2,1). 

They have x = (0, 0, 0, 1, 1,2) and y = (1, 1,2,3,3,3). 
To see that unitary compositions and unitary compositional triples are equivalent, 

we study the graph of a unitary com~sitiona~ triple. To the triple (x,y, a) we associate 
the folfowing directed multigraph G. The vertex set of the graph is (41, . . . , d, d + l> 
and the directed edge set is given by 

Observe that all the edges are directed increasingly with respect to time. We represent 
the edge (Xj, Xj + aj) by the index j. Also the vertex i, where 1 < i < d, has outdegree 
and indegree equal to ai. However the vertex 0 has outdegree k and the vertex d + 1 
has indegree k. Hence we may view the graph as a finite juggling pattern, where we 
begin to throw k balls at time point 0, and we catch all k balls at time point d + 1. 
Condition 2 in Definition 7.2 implies that there is no edge (0,d + 1) in the graph G. 
Thus all of the balls are caught at least once inside the pattern. 

We will give a linear order to the ai edges that come in at vertex i. We will also give 
a linear order to the Cl; edges that leave the vertex i. By matching these two linear 
orders with each other, we will be able to connect the edges into paths. Hence we may 
view the graph G as being composed of k edge-disjoint paths. 

The two linear orders are defined as follows: The order of the edges leaving vertex 
i is given by the underlying order of indices of the edges. That is, when i = Xj = Xk we 
order two edges by (Xj, Xj + Uj) < (xk, xk + uk) if j < k. The order of the edges entering 
vertex i is given by the following rule. Assume that i = Xj -t aj = xk + uk. We order 
(Xj, Xj i- Uj) < (Xk, Xk f Uk) if Xj > Xk, Or Xj = Xk and j < k. 

By pairing together at every vertex the entering edges with the outgoing edges (with 
respect to the two linear orders), we obtain in a canonical way a decomposition of the 
graph into k paths, PI, . . . , Pk. For a path Pi, consider the characteristic vector xpI of 
the set of vertices the path Pi goes through, not including the vertices 0 and d + 1. 
Clearly the sum of these k characteristic vectors xp,, . . . , xp, will be the vector CL Since 
the edges leaving the vertex 0 also receive a linear ordering, we obtain a unitary 
composition CL For example, the unitary compositional triple ((0, 0, 1, 1,2), (1, 1,2,3,3), 
(1, 1,1,2, I)) of the vector (2,l) has the two paths 0 --f 1 --, 2 -+ 3 and 0 + 1 -+ 3. These 
paths correspond to the unitary composition (1,l) f (1,O). Whereas, the other unitary 
compositional triple of the vector (2,l) into two parts corresponds to the unitary 
composition (1,O) + (1,l). 
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We may aho deduce that there is a unique unitary compositional triple for every 
unitary composition. Thus unitary composition and unitary compositional triple are 
equivalent concepts. 

Similar to a juggling triple we can define external and internal crossings of a unitary 
compositional triple. We denote the number of crossings of the unitary composition 
(x,y,a) by cross(x,y,a) and define the weight of a unitary compositional triple to be 
qcrossdu,y*“). This definition of weight agrees with Haglund’s definition [7, Definition 
2.16 and Theorem 4.2.21. Hence we may define the q-analogue of g&r) as follows: 

Definition 73. Define gk [a] to be 

where the sum ranges over all unitary compositional triples &,~,a) of a into k parts. 

Again let us consider the case when a = (2,1). Since we already listed all the 
unitary compositions of (2,1), we easily determine gZ [(2, l)] = 4 -t 1 and g3 [(2, l)] = 

44 + 43 + 42. 
Recall that k! * S(n,k) enumerates the number of compositions of n efements into 

k nonempty parts. Thus one may view gk[u] as a generalization of the quantity 
[k]! * S[n, k], since the following identity holds: 

gk[@,l,;..,l)] = [k]!*S[n,k]. 

To prove this identity, use the interpretation of Stirling numbers of second kind given 
in Section 6. Observe that the factor [k]! counts the weight of the internal crossings at 
the vertex 0. 

The following identity is due to Haglund [7, Section 4.2, Eq. (S)]. The case when 
q = 1 of this identity was probably known to MacMahon, who studied the function 

gk Cal. 

Theorem 7.4 (Haglund [7]). 

Sketch of proof. The proof is quite similar to the proof of Theorem 6.4. Consider 
all juggling triples of period d where the degrees of the vertices are respectively 

Ql,Q, *** ,Kf. By Theorem 5.1 the sum of the weights of these triples is 
[b: 7. [[J .+a [z]. Contract now every set of d vertices. We then obtain a juggling 
pattern of period 1, say with k balls. Such patterns are enumerated by [f!. The 
crossings that disappear when we contract the graph are counted by the factor gr [a]. 
Thus the identity follows. q 
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Corollary 7.5. The value of gk [a] does not depend on the order of the entries of a. 

8. A genedization of juggling 

We now consider patterns where the number of balls caught at a particular time 
point does not necessarily equal the number of balls thrown at that same time point. 
Similar to a juggling triple we define a juggling quadruple. 

Definition 8.1. A juggling quadruple (d, x,y,a) consists of a positive integer d, two 
vectors x = (x1,x2, ..- ,x,1 and Y = (yl,yz, . . . , y,,J of integers, and a vector 
u = (41,uz, .** , a,) of positive integers, such that the following two conditions hold: 

1. 0 < xI,yi < d - 1 for all i = 1 2 , , ‘**, m. 
2. (a + x) mod d N y, where the mod d applies component-wise. 

We call d the period, x the throw vector, y the catch vector, and a the juggling sequence. 

Observe that when x = y, this is equivalent to a juggling triple. 
The number of balls of a juggling quadruple is not well-defined. Instead we will 

consider the sum Cr! 1 ai. Observe that Cr’ i ai E C I”= i(yi - xt) mod d. 
As before, to a juggling quadruple (d,x,y,a) we associate the following directed 

multigraph G on the integers Z. The vertex set of the graph is Z and the directed edge 
set is given by 

E(G)=((xi+k’d,xi+ai+k*d): l<i<m,k~Z). 

Let CQ be equal to the outdegree at vertex j in the associated graph, and bj equal to the 
indegree at vertex j. That is, for 0 Q j < d - 1, Crj is the cardinality of the set (i: Xi = j>, 
and similarly pj = I(i: yi = j>l. As for juggling triples, we define external and internal 
crossings in the same manner. We say that the weight of a juggling quadruple is equal 
to 4 to the number of crossings. 

Theorem 8.2. The sum of the weight ofjugg~ing quadruples (d,x,y, a) having period d. 
throw vector x, catch vector y, and Cf= 1 ai < N, where N z CF!“=l fyi - xi)modd, is 

0 1 2 3 4 5 6 7 8 9 IO I1 12 13 14 
Fig. 7. A juggling pattern with d = 3, x = (O,O, 2), y = (2,2,2x and u = (2,2,3). 
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equal to 

[~I.[~~]...[~~:]~ 
where no,nl, . . . , &_ i is the unique SokAtion to the system of equations 

nifl = tli -fii+Ei, i=O,l,..., d-l, 

and the indices are considered module d. 

In the case when x =y, Theorem 8.2 implies Theorem 5.1. 

Sketch of proof of Theorem 8.2. The proof is similar to the proof of Theorem 5.1. 
Assume that there are ni balls in the air just before time point i. It is easy to see that 
no,ni, **a, nd_ l will satisfy the system of equations given in the theorem, and that it is 
the unique solution. Thus cards in the deck used at time i will show how to catch bi 
balls out of ni balls, and throw ai balls in the LYE lowest orbits. Thus the sum of the 
weights in the ith deck is [;ti,], and the result follows. 0 

We can extend the notion of unitary compositional triples which were studied in the 
previous section. 

De&&ion 8.3. A generalized unitary compositional triple of two vectors CC, /I E Nd into 
k parts, sueh that l/all = /l/Q, is a triple of vectors (x,y, a), where each vector has length 
m = 11&1} + k, satisfying 

1. x = (Ok,&)) andy = (z(fi), (d + l)J, where the operation is concatenation of two 
vectors. 

2. The entries of the vector a are positive integers less than or equal to d. 
3. a + x - y, that is, the two vectors a + x and y have the same entries. 

As before, we can define the graph and the number of crossings of a generalized 
unitary compositional triple. 

where the sum ranges over all generalized unitary compositional triples @,~,a) of 
dl and /I into k parts. 

Notice that ck [a!, a] = 61: [a]. By applying the techniques of Sections 6 and 7, we can 
obtain a generalization of Haglund’s identity (see Theorem 7.4). 



Theorem 8.5. 

9. Concluding remarks 

A number of open questions remain to be answered. For instance, what happens if 
we consider colored balls? Is there a juggling interpretation of s [n, k], the q-Stirling 
numbers of the first kind? 

Fomin has posed the problem of studying how juggling balls in a simple juggling 
pattern are permuted. That is, we would like to compute 

where ai = (i, i + 1) is the ith eiementa~ reflection in the symmetric group on 
n elements and the computation takes place in the group algebra of the symmetric 

group- 
The computation of the Poincare series for ,& leads us to ask if a version of juggling 

could be used to compute the Poincart series of other affine Weyl groups. Recall that 
there are combinatorial descriptions of &, e,, and & using permutations of the 
integers (see [l, is]). We are now considering en’,, which appears to be the most 
promising candidate. 

MacMahon also studied h(a), the number of compositions of a vector a into 
k parts. Haglund has defined a q-analogue of X(a), namely fk[a], and proved the 
following identity [7, Section 4.1, Eq. (411 

MacMahon did give, in the case when q = 1, a proof of an equivalent identity 
[9, Article 171. Haglund has asked if there is a combinato~al model, such as 
juggling, which can prove this identity bijectively. 

Juggling patterns may be generalized in the following manner. Given a group G and 
a normal subgroup H of G, consider all the permutations IC of G such that 
R( 9 0 k) = x(g) * h for all h E H. Does this approach give more generalized enumerative 
results? 
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