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Abstract

We present a method of lifting linear inequalities for the flagyector of polytopes to higher
dimensions. Known inequalities that can be lifted using this technique are the non-negativity of
the toric g-vector and that the simplex minimizes tkd-index. We obtain new inequalities for
six-dimensional polytopes. In the last section we present the currently best known inequalities
for dimensions 5 through 8.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The flag f-vector of a convex polytope contains all the enumerative incidence in-
formation between the faces. Thus to classify the set of all possible fflagctors
is one of the great open problems in discrete geometry. To date only partial results
to this problem have been obtained. For the case when the polytopes are simpli-
cial (and dually, simple), the problem reduces to classifying fheectors of sim-
plicial polytopes. This major step was solved by the combined effort of Billera and
Lee [7] and Stanley{19]. Returning to the general case, the classification of ffag
vectors of three-dimensional polytopes was done by Steii almost 100 years
ago. By Euler’s relation the number of edggs is determined by the number ver-
tices fo and the number of facegy. Steinitz proved thatfy and f> satisfy the
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two inequalities
f2<2-fo—4 and fo<2- f2—-4 (1.1)

Interestingly, the reverse is also true. Given two integéysand f> that satisfy the
two inequalities in 1.1), there is a three-dimensional polytope wifh vertices andf»
faces. For four-dimensional polytopes the problem remains open. The article by Bayer
[1] contains the current state of knowledge for four-dimensional polytopes.
The first step toward classifying flag-vectors was taken by Bayer and Billef2].
They described all the linear redundancies occurring among thefflagctor entries
of a polytope. These relations are known as the generalized Dehn-Somerville relations.
They imply that flagf-vectors of polytopes lie in a subspace of dimenskan where
F,, denotes theith Fibonacci number.

The next natural step is to look for linear inequalities that the flag vectors of polytopes
satisfy. One such example is the togevector. It measures the intersection homology
Betti numbers of the toric variety associated with a rational polytope. The entries of
the toric g-vector are linear combinations of the entries of the flagector. Stanley
[21] proved that the torig-vector of a rational polytope is non-negative using the hard
Lefschetz theorem. Using rigidity theory, Kaldi2] proved that the second entry of the
toric g-vector of any polytopeP is non-negative. Recently, Kafi4] proved the hard
Lefschetz theorem for combinatorial intersection cohomology, and as consequence the
toric g-vector is non-negative for all polytopes. More inequalities can be obtained by
using a convolution due to KaldlL3]. However, this is far from being an exhaustive
list. See the work of Stenso25].

A different direction of research involves tled-index, a non-commutative polynomial
which encodes the flag-vector of a polytope without linear redundancid$. Stanley
[22] proved that thed-index of a polytope has non-negative coefficients. This important
result foreshadowed the central role tbeé-index would later play in advancing the
frontiers of polytopal inequalities. The next step was taken by Billera and Ehrenborg
who proved that thed-index is minimized coefficientwise on thedimensional simplex
2, [5]. This gives a sharpening of Stanley’s inequalities.

The purpose of this paper is to describe a new lifting technique for polytopal in-
equalities; see Theore®1l Given a linear inequality o-dimensional polytopes, we
can produce inequalities in dimensions larger tharfFor instance, when applying the
lifting technique to the minimization inequalities of Billera—Ehrenborg, we obtain a
large class of inequalities; see Theor@7. One consequence is that the coefficients
of the cd-index are increasing when replacirg§ with d. Hence thecd-monomial
with the largest coefficient in thed-index of a polytope has no consecutigs; see
Corollary 3.9. Another inequality that will generate more inequalities when lifted is the
non-negativity of the torigg-vector; see Theorem.4.

Using our lifting techniqgue we can now explicitly state the currently best known
inequalities for polytopes of low dimensions. Dimension 4 has been described by Bayer
[1]. We describe the inequalities for five-dimensional polytopes in Se&i@ince one
can deduce many inequalities by applying the Kalai convolution, we only present the
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irreducible inequalities for polytopes in dimensions 6 through 8. In the last section we
discuss open problems and further research.

2. Preliminaries

Let P be ann-dimensional polytope. Fo§ = {s1, ..., sx} a subset of0,1,...,n—
1}, define fs to be the number of flags (chains) of facés C F» C --- C F; such
that dim(F;) = s;. The 2 values fs constitute the flagf-vector of the polytopeP.
Let a and b be two non-commutative variables. FSra subset of{0,...,n — 1} de-
fine a polynomialvs of degreen by letting vy = vovy---v,—-1 Wherev; = a— b
if i ¢ § andv; = b otherwise. Theab-index ¥ (P) of a polytope P is defined
by

W(P) =) fs-vs,
S

where S ranges over all subsets @0, ...,n — 1}. The ab-index encodes the flag-
vector of a polytopeP. Its use is demonstrated by the following theorem, due to Bayer
and Klapper[4].

Theorem 2.1. Let P be polytope. Then thab-index of P, ¥ (P), can be written in
terms ofc=a+bandd=a-b+b-a

When ¥ (P) is expressed in terms af and d, it is called thecd-index. Observe
that c has degree 1 and has degree 2. Hence there arg cd-monomials of degree
n, where F,, is thenth Fibonacci number. The flag-vector information is encoded as
the coefficients of these monomials. Also knowing ttteindex of a polytope is the
same as knowing the flag-vector.

The existence of thed-index is equivalent to the generalized Dehn-Somerville rela-
tions due to Bayer and Billerf2]. These relations are all the linear relations that hold
among the entries of the flag-vector. Thecd-monomials offer an explicit linear basis
for the subspace cut out by the generalized Dehn-Somerville relations.

In order to discuss inequalities for polytopes, define a bilinear fofm: R(c, d) x
R{c,d) — R by (ulv) = 6, for all cd-monomialsu and v. A linear functional
L on the flag f-vectors ofn-dimensional polytopes can now be written in terms of
the bilinear form asL(P) = (z| W(P)), wherez is a cd-polynomial homogeneous of
degreen.

Kalai’'s convolution is defined as follows; sdg&3]. Let M and L be two linear
functionals on flagf-vectors ofm- and n-dimensional polytopes, respectively. Define
the linear functionalM x L on (m + n + 1)-dimensional polytope® by

(M % L)(P)=Y_ M(F)-L(P/F),
F
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where F' ranges over alln-dimensional faces oP and P/F denotes the face figure
of F. It is straightforward to see that i## and L are non-negative on all polytopes
then so is their convolution/ * L.

Kalai’'s convolution defines a convolution di(c, d) by

(@xw|P(P) = > (IP(F)) - (w|P(P/F)).

F

This convolution has an explicit expression in termscdfpolynomials. The following
result is independently due to Mahajftb], Reading[18], and Stensoiji25].

Proposition 2.2. For two cd-monomialsu and v we have

uC*Cv = 2-uc3v + udcv + ucdv,

ud s cv = 2- udc?v + ud?v,

uc* dv = 2- uc?dv + ud?v,

ud «dv = 2. udcdv.
Also we havelx1=2-¢, 1xcv =2 -c?v+dv, 1xdv =2 cdv, uc*1 =2 uc®+ud
and ud x 1= 2- udc.

Proof. [Sketch] Consider the coproduet on R(c, d) that first appeared ifil1]. It is
defined byA(c) = 2-1® 1 and4(d) = c® 1+ 1 ® c and satisfies the Newtonian
identity A(u-v) =), u@y Que) -v+ Y, u-v1 ®ve). It is now enough to observe
that the bilinear formy{-|-) is a Laplace pairing, that is,

(s vw) =Y (ulwa) - (v|we);

w

see[10]. From these facts all the relations in the proposition follow.]

Proposition2.2 can be rewritten into the following more compact form. Factor the
monomialu asu = ujup whereuy = ¢ if u ends with ac and up = 1 otherwise.
Similarly, factor v = viv2 wherevi = c if v begins with ac and v1 = 1 otherwise.
Then the Kalai convolutiom v is equal tou; pv2 where p is determined by the table

uz | v1 P
111 2c
1]¢ 2c2 +d
c |1 2c2 +d
c| c|2c3+dc+cd
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As a corollary we obtain the following result:

Corollary 2.3. Let u, g, r and v be four cd-monomials such that does not end in
¢ and v does not begin witlt. Then the following associative law holds between the
product and the Kalai convolution

u-(g=xr)y-v=_Ww-q)*(@-v).

As a remark, whery differs from 1 we can omit the condition thatdoes not end
in c. Similarly, whenr differs from 1 we can omit the condition thatdoes not begin
with ¢. However, in what follows we will not be needing this slightly more general
setting.

On the algebraR(c, d) there is a natural antiautomorphism — w* defined by
reversing each monomial; s¢&l]. This is also an antiautomorphism with respect to
the Kalai convolution. On the geometric level it corresponds to the dual polyfdpe
that is, Y(P*) = Y(P)*. Hence for an inequality H|¥(P)) > 0 we also have the
dual inequality(H*|¥(P)) > 0.

3. The lifting theorem

We now present our lifting theorem. It allows us to obtain more inequalities on the
flag f-vectors of polytopes.

Theorem 3.1. Let H be acd-polynomial such that the inequality? |¥(P)) > 0 holds
for all (rational) polytopesP. Then for all(rational) polytopesP we have the inequality

(u-H-v[¥(P)) =0,

whereu and v are cd-monomials such that does not end irc and v does not begin
with c.

In order to prove this theorem, let us introduce two partial ordersdspolynomials.
Definition 3.2. Let H, z and w be threecd-polynomials.

(1) Define the relation<yw if we have(u - H - v|lw — z) > 0 for all cd-monomialsu
and v such thatu does not end witlc and v does not begin witfc.

(2) Define the relation<',w if we have (u- H - v|lw —z) > 0 for all cd-monomialsu
and v such thatt does not end witlt, v does not begin witltt and v is different
from 1.

Observe that in the definition of the relatiasx,w the requirement thav # 1
implies thatv begins with ad. Moreover, the conclusion of Theore®l can now be
stated as¥'(P)=y0.
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Proposition 3.3. The two relationsz=7,0 and w3= 50 together imply thatz - ¢ + w -
d>',0.

Proof. We would like to verify that(u - H - v|z - ¢+ w - d) > 0 for all cd-monomials
u and v such thatu does not end witlkc, v does not begin wittt and v is different
from 1. If v = v’ -c thenv’ # 1 and the left-hand side is given Ry - H - v/|z), which
is non-negative by the assumptier’,0. If v ends with ad then the left-hand side is
non-negative by the relatiom>=450. [

Proof of Theorem 3.1.Assume without loss of generality thaf is homogeneous of
degreek. Let P be ann-dimensional polytope. Using the result of Bruggesser and
Mani [9], there is a line shelling, ..., F,, of the polytopeP, whereFi,..., F,, are

the facets ofP. Consider the following two statements:

(&) Thecd-index ¥Y(P) satisfies¥(P)=yO0.
(b) The following string of inequalities holds, wherlé denotes the semisuspension of
the cell complexI”; see[5,22]:

Oy P(F)<y P(F1U )<y - <gP(FLU -+ U Fy_1)) = P(P).

We will prove these two statements by induction on the dimensioffthe induction
basis isn < k+ 1. In that case observe that there is nothing to prove in statement (b).
In statement (a) there is nothing to prove, unless k, in which the statement is just
the assumption of the theorem.

We next prove (a) in dimension — 2 and (b) in dimensiom — 1 imply (b) in
dimensionn. By Billera and Ehrenbord5, Lemma 4.2](also in the work of Stanley
[22]) we have that

P(FLU---UF)) = Y((F1U---UF_1))
= (P(F,) — Y(A) -c+ P(04) - d,

where A = (FLU---U F,_1) N F,. By induction we know thatV(F,) — 'P(A’);},O.
Now consider the sefA. We know thatA is the union of the facets of, that form
the beginning of a line shelling. Thus is combinatorially equivalent to atn — 2)-
dimensional polytope and hence by inducti#iicA)>=50. Now by Propositior8.3 we
obtain that

P((FLU---UF)) = P(F1U---UF_1))>}0,

completing the proof of (b).

We prove (b) in dimension implies (a) in dimensiom by two cases. The first case
whenv is different from 1 follows directly by transitivity of all the order relations in
(b), that is, we have €, ¥ (P). For the second case whenis equal to 1 we have
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u is different from 1 since deg@) + degv) = n — k > 2. Now the result follows by
applying the inequality €, ¥ (P) to the dual polytopeP* using the dual ordex’,..
Observe that whegH |¥(P)) > 0 holds for rational polytope®, the presented proof
holds with a few remarks. In the first part observe thatis a shelling component of
the rational polytopefF,, hence ¥ (F,) — ?’(/1/)>/HO. Moreover,0A can be obtained
by a rational projection so that it is combinatorially equivalent to a rational polytope.
Hence the first part of the proof holds in the rational case. Since the dual polytope
of a rational, polytope is also rational we have that the second part of the proof also
holds for rational polytopes.[]
We present two examples of TheoredriL

Example 3.4.We have that(c*|¥(P)) = Ok.dim¢p) = 0. Since everycd-monomial w
factors into the formw = c-v, wherev does not begirt, we have thatw|¥(P)) > 0.
This is Stanley’s result that thed-index of a polytope has non-negative coefficients;
see[22].

The next example shows that it is not necessary to lift inequalities obtained by the
Kalai convolution. Instead, it is better to first lift each term and then convolve the lifted
inequalities.

Example 3.5. Assume that fori = 1,2 we have the inequalitiegH; |V (P)) > 0. By
Corollary 2.3 the lifting of the convolved inequality gives

((u- Hy)* (Hz2 - v)|¥(P)) = (u- (Hyx Hp) - v|¥(P)) = 0. (3.1)
Now instead lift each of the inequalities and then convolute. This gives
((uy - Hy - v1) * (uz - Hz - v2)| P(P)) > 0. (3.2)

Observe that the inequality ir8() is a special case of the inequality i8.2).

We end this section with a large class of inequalities. Foa cd-monomial of
degreek, let 4, denote the coefficient of in the cd-index of the k-dimensional
simplex, ¥ (Xy).

Lemma 3.6. For a cd-monomialg and non-negative integerisand j, we have
Aci,q_cj > Aq.

Proof. By symmetry it is enough to prove that,.. > 4,. We have

(g -clP(Zkt1))

(g -cl¥(21) -c+ G(¥(21)

WV

(g -cl¥(2x) - c)
(g1 (20),
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where the first step is the pyramid operation developedlij and the second step
uses that the derivatio& introduced in[11] preserves non-negativity. [

Theorem 3.7.Let P be a polytope of dimensiom and letu, ¢ and v be threecd-
monomials such that the sum of the degrees,af and v is n and the degree of is
k. Then we have

(u-q-v|¥(P)) >Aq'(u~ckov|‘P(P)). (3.3)

Proof. Factoru andv so thatu = u«’-c¢’, v = ¢/ - v/, andu’ does not end irc and
v’ does not begin withc. Finally, letg’ = ¢’ - ¢ -¢/ andk’ = k+i + j. Thus the
monomialg’ has degreé’. Billera and Ehrenborg5] proved that thed-index over all
k’-dimensional polytopes is coefficientwise minimized on falimensional simplex
2. Apply this to thecd-monomial ¢’, we have(¢'|V(P)) = (¢'|¥ (X)) = 4y =

Ay - (1P (P)). Thus we can writelg’ — 4, - ¢'|¥(P)) > 0. Lifting this inequality
we have(u- (¢' — 4, Ky .v'|¥(P)) > 0. Expanding this inequality in terms af ¢

and v and applying Lemma.6, we obtain the desired result. (J

The first dimension that Theoref7 says something new about polytopes is dimen-
sion 6. This is the case when= 1, ¢ = dc? andv = d, and the dual case = d,
g = c2d and v = 1. See inequalitie$5.6.3) and (5.6.3*) in Theorem5.6. Moreover,
allowing the two monomials: and v in Theorem3.7 to end, respectively, begin, with
a c does not give any sharper inequalities.

We have two direct corollaries of TheoreBn?.

Corollary 3.8. The cd-index of a polytopeP satisfies the following inequalities

o i+ 42 o
(u-cde/ - v|P(P)) > ((’J,”Jr )—1>.<u-c’+f+2-u|qf(P)),
i+1
(u-d | P(P)) > Eziy1/2 (u-c? v|P(P)),
for any twocd-monomialsu and v and whereE,, denotes theith Euler number

Proof. By Theorem3.7 it is enough to observe thaflyg, = ("7/i%) — 1, and
Agi = E2i11/2. The second statement follows frof, Proposition 8.2] [

Corollary 3.9. Let P be a polytope. Then the largest-coefficient in ¥(P) corre-
sponds to acd-monomial having no consecutis.

Proof. Apply Theorem3.7 with ¢ = d recalling thatdq =1. O
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Observe that the maximum is not necessarily unique, as demonstrated duitidex
of a triangle, ¥(22) = ¢ + d.

4. Lifting the toric g-vector

We now turn our attention to the torig-vector. It is defined by a recursion; see
for instance, Stanley20, Chapter 3.14] However we build on the work of Bayer—
Ehrenborg who described the torgepolynomial in terms of thecd-index. Recall that
the toric g-vector is formed from the coefficients of thepolynomial, that is,

Ln/2] '
g(P,x)= ) gl(P)-x'.
i=0

Before we begin, a few definitions are necessary. Defifke j) to denote the difference
(’j‘) - (jfl). Also we need two polynomial sequences. First defihgx) by Qi (x) =
Z}(:kgl)m(—l)f .p(k—1, j)-x/. Now defineT;(x) for k odd asT(x) = (—1)*—D/2.
Ci—1y/2 - x*~D/2 where C,, = p(2n,n) denotes thesith Catalan number. For even
let Tx (x) = 0. We are now able to state the result of Bayer and Ehren3prgheorem
4.2),

Theorem 4.1. Let g be the linear map fronR(c, d) to R[x] such that
g(crdc?d - dcdc’) = x" - Q1) - [ | Ty 42 (0). 4.1)
j=1
Then the toricg-polynomial of a polytopeP is described byg (¥ (P)) = g(P, x).

Observe that the entry’ in the toricg-vector is a linear functional ood-polynomials
of degreen. Hence we viewg! as a homogeneousi-polynomial of degree: such that

(g 1P (P)) = g (P),

for all n-dimensional polytopes.
For v a cd-monomial of degree i2we define a polynomiab(v, n) in the variable
n. If v cannot be written in terms af?2 andd then b(v, n) = 0. Otherwise let

b(w,n) = (=D [[ Ce, - p(n = 2i + 2,11, €r11),
j=1

wherev = c?f1dc?f2d - - - dc2ér+1,
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Theorem 4.2. The toric cd-polynomial ¢! is described by

g = (Z b(v,n) - v) A

where the sum ranges over at-monomialsv of degree?2i.

Proof. Let [x']p(x) denote the coefficient af’ in the polynomialp(x). To expand
the toric cd-polynomial g/ in terms of the monomial basis, we need to calculate

(gh|cftdcfed - - dctdct) = [x']g(cftdcfad - - - dctdch)

,
= ¥ Ok (@) - [ Tay+a(x0). (4.2)
j=1
Observe first if any of théj, ..., k. are odd, the expression vanishes. Thus we may
assume thak, ..., k. are all even. Observe that the smallest powex @ppearing in

(4.2 isr+3_1kj/2 = (n —k)/2. Hence fori < (n —k)/2 the coefficient ofx’ is
equal to zero. Thus fok < n — 2i we have that

(gr|cfrdcfad - - - dfdcky = 0.
Thus the onlycd-monomials that appear in theg-polynomial ¢! must havek > n —2i
and all thekq, ..., k. even.

Let k11 be 2 —2r — Y_; k; such thatv = cfidc*2d - - - dc*dch+1 has degree i2
and let¢; = k;/2. Continuing to expand4(2 we have

- Qa0 - [ Tiy+a) = (~DZi=th72 T 2 - /21 Qrsa (v)

j=1 j=1

-
r+1 , .
= (D> Ty, - ple, trsa).
j=1
This expression i$(v,n) sincek =n —2i +2¢,41. O

The three first examples of Theoreh? are g5 =", g] = dc"2—(n—1)-¢" and
n_d2n—4_ Zdn—4_ _ . _2 n—1 B )
gy =d“C c°dc (n—3)-dc"“+ 2 1).c".

Observe thatr (v, 2i) = b(v*, 2i) for v of degree 2 From this the classical duality
g% = g2 follows.
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Proposition 4.3. The toric cd-polynomial gf‘ satisfies the following identity

i
; j+i—-m-—1 K+
g -/ =) ( - )-gm’.

m=0

Proof. Observe that there is nothing to prove whea:- 0. Assuming that the statement
is true whenj = 1, by a straightforward induction the casgs> 2 follow. Thus it is
enough to prove the case= 1:

.c= Z gn-i-l.

This is equivalent to proving

(¢f - clw) = <Zg"+l >

where w is a cd-monomial of degree: + 1. Clearly this is true whem ends with a
d. Thus consider the case whan= v - ¢, wherev is a cd-monomial of degree:. For

a polynomial p(x) = degl’) -x' let U< u[p(x)] be the polynomial}"-" ;a; - x'.
Now we have

<Z g"+1|v.c> = Y "gw-0)

m=0

= Y X" < |2 [(L = x) - g(0)]
m=0

=Y ¥"11-x) - g)

m=0

i

= Z ([xm]g(v) - [xm_l]g(v)>

m=0

= [x'1g(v) = (g'|v),

where the second step is by Bayer and Ehrenlj8rgProposition 7.10jand the third
step by the inequalityn <i < [n/2] < |(n+1)/2]. O

Applying our main result Theorer.1to H = gf -¢/ we have the following result.
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Theorem 4.4.Let P be a polytope of dimension, let « and v be any twocd-
monomials such that does not end irt, the sum of the degrees ofand v isn —k
and2 <i <n/2. Then

(u-gk v|P(P) =0.

Theorem4.4 gives a new inequality in dimension 8; see Theorbr8 inequality
(5.8.10). Similar to Theorem3.7, we do not get any sharper inequalities in Theorem
4.4 by allowing the monomiab to begin with ac.

5. Inequalities for five through eight-dimensional polytopes

The purpose of this section is to present the currently best-known linear inequalities
for polytopes of dimensions 5 through 8. We introduce two notations to simplify the
presentation. First we will writav > 0 instead of the longetw|¥(P)) > 0. Second
for a cd-monomialg of degreek let 6¥(¢4) denote the polynomiaj -4 .ck. (Observe
that the super indek is superfluous since it is given by the degree of the monomjal
For instance, inequality3(3) in Theorem3.7 can be written as - ¢*(¢) - v > 0. Also
note that the two inequalities” (dc”—2) > 0 and¢”(c"~2d) > 0 are just the classical
statements that am-dimensional polytope has at least 1 vertices, respectively + 1
facets.

Before we consider 5 through 8-dimensional polytopes, let us briefly review the
lower dimensional cases. (Also observe that we omit Theorem 5.1 in order to keep the
numbering consistent with the dimensions.)

Theorem 5.2. The cd-index (equivalently thef-vecto) of a polygon P satisfies the
inequality.

o?(d) > 0. (5.2.1)

Theorem 5.3. The cd-index (equivalently thef-vecto) of a 3-dimensional polytope®
satisfies the following two inequalities

1x0%(d) > 0, d?d)x1 > 0. (5.3.1) (5.3.1%)

Theoremb5.3 is due to Steinit424]. As mentioned in the introduction, the converse
of this theorem is the more interesting part. The best known result for four-dimensional
polytopes is due to Baydd]:
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Theorem 5.4. Thecd-index(equivalently the flagF-vectol of a 4-dimensional polytope
P satisfies the following list of six inequalities

gtdc?) >0, d*c3d) > 0, (5.4.1) (5.4.1%)
g5 > 0, (5.4.2)
1xo2(d)x1 > 0, (5.4.3)
cko?(d) >0, o%(d)xc > 0. (5.4.4) (5.4.4%)

We now list the currently best inequalities for 5-dimensional polytopes.

Theorem 5.5. The cd-index of a 5-dimensional polytope satisfies the following list
of 13 inequalities

g2dc® >0, ¢°c3d) >0, (5.5.1) (5.5.1%)
1xo%dc? >0, o*cd)yx1 > 0, (5.5.2) (5.5.2%)
1xo%c?d) >0, o¢%dc®)x1 > 0, (5.5.3) (5.5.3%)

1% g5 >0, gxl >0, (5.5.4) (5.5.4*)
cxa(d)x1 >0, 1xd2(d)xc > 0, (5.5.5) (5.5.5%)
2xo?d) >0, c%d)xc® >0, (5.5.6) (5.5.6%)
a2(d) * 2(d) > 0. (5.5.7)

Before continuing with dimension 6 two observations are needed. First, so far the
inequalities have described a cone. From now on, the inequalities we present determines
a polyhedron. Second, the number of facets of the polyhedron grows rapidly. Hence we
will only list the irreducible inequalities in dimensions 6 through 8, that is, inequalities
that cannot be factored using the Kalai convolution.

Theorem 5.6. The cd-index of a 6-dimensional polytope satisfies the following list
of irreducible inequalities

o®dcyh >0, o5c*) > 0, (5.6.1) (5.6.1%)
6%(c?dc?) > o, (5.6.2)
o4dc?)-d > 0, d-o%c?d) > 0, (5.6.3) (5.6.3%)
g5 > 0, g5 > 0, (5.6.4) (5.6.4%)
] >0 (5.6.5)

Theorem 5.7. The cd-index of a 7-dimensional polytope satisfies the following list
of eight irreducible inequalities

o’(dc®) >0, o/(c®d) > 0, (5.7.1) (5.7.1%)
o’(c2dc®) > 0, o’(c%dc?) > 0, (5.7.2) (5.7.2%)
62dcd®)-d > 0, d-o°(c3d) > 0, (5.7.3) (5.7.3%)

g5 >0 g =0 (5.7.4) (5.7.4")
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Theorem 5.8. The cd-index of an 8-dimensional polytope satisfies the following list
of irreducible inequalities

o8dc® >0, 6%c®d) >0 (5.81) (5.8.1%
o8cdch >0, oBctdc?) > 0, (5.82) (5.8.2%)
o8(c3dc®) > 0, (5.8.3)
o8(dc?dc?) > 0, o¢8(c?dc2d) > 0, (5.8.4) (5.8.4%)
o%dchH-d >0 d-6%c*d) >0, (5.85) (5.8.5%)

o%(dc?) -dc? > 0, c?d.o*(c2d) > 0, (5.8.6) (5.8.6%)
o%(dc?) -d?2 > 0, d?.¢%c%d) > 0, (5.8.7) (5.8.7%)
o%(c2d) -dc? > 0, c?d-o*dc?) > 0, (5.8.8) (5.8.8%)
g5 > 0, g5 > 0, (5.8.9) (5.8.9%)
g5-d > 0, d-g&* >0, (5.8.10) (5.8.10%)
g8 > 0, & > 0, (5.8.11) (5.8.11%)
g§ > 0. (5.8.12)

The calculations in Theorens.5 through 5.8 were carried out in Maple. We end
this section by summarizing some data on these polyhedra. Recall that the Fibonacci
number minus one is the number af-monomials of degree excluding the monomial
c". HenceF, — 1 is the dimension of thath polyhedron.

n 2 34 5 6 7 8
F,—1 1 2 4 7 12 20 33
# facets of the polyhedron 1 2 6 13 29 60 119
# irreducible facets of the polyhedroll 0 3 2 8 8 22

6. Concluding remarks

Theorem3.1 produces many new inequalities for us to consider. However, these lifted
inequalities do not give an equality when applied to the simplex. Thus it is natural to
consider the following generalization of Theoredri

Conjecture 6.1. Let H be a cd-polynomial such that the inequalityH|¥ (L)) > 0
holds for all Gorensteit lattices L. Moreover let u and v be twocd-monomials such
that # does not end irc, v does not begin witlt and they are not both equal tb.
Then the following inequality holds for all Gorenstgitattices L of rank n + 1:

(u-H-v|¥(L)—¥(2y) =0

This conjecture extends Conjecture 2.7 of Starj2g].
One possible method to prove this conjecture for polytopes is to use the following
proposition and conjecture.
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Proposition 6.2. If the inequality ¥(X,)<’, ¥(P) holds for all n-dimensional poly-
topes P then for all n-dimensional polytope® we have¥(X,)< g ¥ (P).

The proof of this proposition follows the exact same lines as the argument given for
the implication(b) = (@) in the proof of Theoren8.1

Conjecture 6.3. Assume thatH is a cd-polynomial homogeneous of degréesuch
that the inequality(H|¥(Q)) > 0 holds for all k-dimensional polytope®). Let P
be an r-dimensional polytope where > k. Let F be a face of dimensiom of

P and let Fy,..., F, be the facets ofP that contain the faceF. Similarly, let
G1,...,G,_,, be the facets of the simplex, containing anm-dimensional faces of
2,. Then

P((G1U---UGy-p)) <y P(FLU---UF)").

Whenm = 0 this conjecture states th#(Z,)</, Y ((F1U- - -UF;)"). Thus Conjecture
6.1 follows from Proposition6.2 and Conjectures.3.

It is straightforward to verify Conjectur6.1 for polytopes in the case whan=1,
v=dc" % and H = d—c? and dually in the case =c¢**d, v=1 andH =d — 2
Namely, the inequalityg;(P) > 0 can be expressed as:

(d?c"* — Pdc* 4+ (3—n) - A" AW (P) — W(2,)) = 0.

To this inequality add: — 3 times the inequalitydc*—2|¥(P) — ¥(X,)) > 0 and these
cases follow.

Two questions deserve a deeper study. First, when is a new inequality new? That
is, when is an inequality not implied by non-negative linear combinations of known
inequalities? For instance, we conjecture that in the ecasel, H = ¢"~?(dc" %) =
dc"*—((m—3)-c" 2 andv = d for n > 6 that the associated inequality is not implied
by the non-negativity of the torig-vector, the minimization inequalities offered by
the simplex or the Kalai convolutions of these inequalities. Second, when do we stop
trying to find linear inequalities? In other words, how do we recognize that we have
the smallest polyhedron containing all flggvectors of polytopes?

Recall the two inequalities that arrdimensional polytope has at least- 1 vertices
and at least: + 1 facets. In terms of thed-monomial basis they are expressed as
¢"(dc"2) > 0 and¢”(c"~2d) > 0. Observe that in dimensions 4 through 8 these two
inequalities appear as facets of the polyhedra. However, there is only one polytope
appearing on these facets, namely the simplex. Hence it is a challenging problem to
determine if these inequalities are sharp, or if it is possible to sharpen them.

Also when studying the irreducible facet inequalities in Theoré&nfsand 5.7 one
might suspect that the two inequalitiegW(P)) > 0 and (g§|‘P(P)) > 0 are missing.
These inequalities are not facet inequalities. This fact follows from an identity due to
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Stenson[25], namely
(k+2)- g2+t = Z(z+1> g% x gt

Moreover, Stenson proved that the inequalitigédc’/|¥(P) — ¥ (Z,)) > 0, where
i,j=>2andi+ j+ 2 = n, are not implied by the Kalai convolutions of the non-
negativity of the toricg-vector. These inequalities are expressedsa& dc/) > 0 in
Theorems5.6 through5.8.

Meisinger, Kleinschmidt and Kalai proved that a 9-dimensional rational polytope has
a 3-dimensional face that has less than 78 vertices or less than 7gX&tedowever,
with the recent proof that the entries in the togievector are non-negativel4], their
result now extends to all polytopes. Their proof uses the following observation. Assume
that P is a 9-dimensional polytope with every 3-dimensional face having at least
vertices and at least faces. If the inequalityL|¥(Q)) > 0 holds for all 5-dimensional
polytopes then the two inequalities

((dc—@m—2)-c3*xLIP(P)) >0 and ((cd— (m —2)-c% % L|¥(P)) >0
also hold. Hence consider the system of linear inequalities

((dc—76c3) % L|z) > 0,
((cd—76c%) *«L|z) > O,
(K|z) >0

where L ranges over linear inequalities for 5-dimensional polytopes &ndanges

over linear inequalities for 9-dimensional polytopes. They showed that this system
is infeasible which implies that there is no 9-dimensional polytope with all its 3-
dimensional faces having at least 78 vertices and at least 78 faces. Using this technique
and the inequalities derived from Theorednl, we were able to improve upon the
constant 78.

Theorem 6.4. A 9-dimensional polytope has a 3-dimensional face that has less than
72 vertices or less tharr2 faces

There are quadratic inequalities known on the entries of the flagctor. Two large
classes of quadratic inequalities are given by Braden and MacPhigkamd Billera
and Ehrenbord5]. However, quadratic inequalities are not as fundamental as linear
inequalities. That is, the set of flag-vectors of convex polytopes seems to have as a
first good approximation the polyhedron determined by linear inequalities. Very little
is known about this issue and it deserves a deeper study.

It would be interesting to continue the work of Readdly], who studied the question
of determining the largest coefficient of thab-index of certain polytopes. Thus to
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continue Corollary3.9 it would be interesting to determine which coefficient of the
cd-index is the largest for different polytopes. In a recent prefdfif} Mahajan proved
that in thecd-index of the simplex>, the monomials with the largest coefficient are
given by

cd®=2/2¢ if n is even
cded”=9/2¢ and cd®=9/2cdc if n is odd

for n sufficiently large.

Acknowledgments

The author was partially supported by National Science Foundation grant 0200624.
| would like to thank the MIT Mathematics Department for their kind support where
this research was initiated while the author was a Visiting Scholar. | also thank the
Institute for Advanced Study where the calculations were carried out. The author also
thanks Margaret Readdy for many helpful suggestions and the two referees for useful
comments.

References

[1] M. Bayer, The extended-vectors of 4-polytopes, J. Combin. Theory Ser. A 44 (1987) 141-151.

[2] M. Bayer, L. Billera, Generalized Dehn—-Sommerville relations for polytopes, spheres and Eulerian
partially ordered sets, Invent. Math. 79 (1985) 143-157.

[3] M. Bayer, R. Ehrenborg, The torib-vectors of partially ordered sets, Trans. Amer. Math. Soc. 352
(2000) 4515-4531.

[4] M. Bayer, A. Klapper, A new index for polytopes, Discrete Comput. Geom. 6 (1991) 33-47.

[5] L.J. Billera, R. Ehrenborg, Monotonicity properties of tle-index for polytopes, Math. Z. 233
(2000) 421-441.

[6] L.J. Billera, R. Ehrenborg, M. Readdy, The2d-index of oriented matroids, J. Combin. Theory
Ser. A 80 (1997) 79-105.

[7]1 LJ. Billera, C.W. Lee, A proof of the sufficiency of McMullen’s conditions fdwvectors of
simplicial polytopes, J. Combin. Theory Ser. A 31 (1981) 237-255.

[8] T.C. Braden, R. MacPherson, Intersection homology of toric varieties and a conjecture of Kalai,
Comment. Math. Helv. 74 (1999) 442-455.

[9] H. Bruggesser, P. Mani, Shellable decompositions of spheres and cells, Math. Scand. 29 (1971)
197-205.

[10] R. Ehrenborgk-Eulerian posets, Order 18 (2001) 227-236.

[11] R. Ehrenborg, M. Readdy, Coproducts and ttekindex, J. Algebraic Combin. 8 (1998) 273-299.
[12] G. Kalai, Rigidity and the lower bound theorem. I, Invent. Math. 88 (1987) 125-151.

[13] G. Kalai, A new basis of polytopes, J. Combin. Theory Ser. A 49 (1988) 191-209.

[14] K. Karu, Hard Lefschetz theorem for nonrational polytopes, arXiv: math.AG/0112087 vA4.

[15] S. Mahajan, Thecd-index of the Boolean lattice, preprint 2002.

[16] G. Meisinger, P. Kleinschmidt, G. Kalai, Three theorems with computer-aided proofs, on three-

dimensional faces and quotients of polytopes, Discrete Comput. Geom. 24 (2000) 413-420.
[17] M.A. Readdy, Extremal problems for the Md&bius function in the face lattice of rtoetahedron,
Discrete Math., Special issue on Algebraic Combinatorics 139 (1995) 361-380.
[18] N. Reading, Non-negatived-coefficients of Gorenstefnposets, Discrete Math. 274 (2004) 323-329.



222

(19]
(20]
(21]

[22]
(23]

[24]
(25]

R. Ehrenborg/Advances in Mathematics 193 (2005) 205-222

R.P. Stanley, The number of faces of simplicial convex polytopes, Adv. Math. 35 (1980) 236-238.
R.P. Stanley, Enumerative Combinatorics, vol. |, Wadsworth and Brooks/Cole, Pacific Grove, 1986.
R.P. Stanley, Generalizeb-vectors, intersection cohomology of toric varieties, and related results,
in: M. Nagata, H. Matsumura (Eds.), Commutative Algebra and Combinatorics, Advanced Studies
in Pure Mathematics, Vol. 11, Kinokuniya, Tokyo and North-Holland, Amsterdam/New York, 1987,
pp. 187-213.

R.P. Stanley, Flag-vectors and thecd-index, Math. Z. 216 (1994) 483-499.

R.P. Stanley, A survey of Eulerian posets, in: T. Bisztriczky, P. McMullen, R. Schneider, A.l. Weiss
(Eds.), Polytopes: Abstract, Convex, and Computational, NATO ASI Series C, Vol. 440, Kluwer
Academic Publishers, Dordrecht, 1994, pp. 187-213.

E. Steinitz, Uber die Eulerischen Polyderrelationen, Arch. Math. Phys. 11 (1906) 86-88.

C. Stenson, Relationships among flagector inequalities for polytopes, Discrete Comput. Geom.
31 (2004) 257-273.



	Lifting inequalities for polytopes
	Introduction
	Preliminaries
	The lifting theorem
	Lifting the toric g-vector
	Inequalities for five through eight-dimensional polytopes
	Concluding remarks
	Acknowledgements
	References


