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Abstract

We present a method of lifting linear inequalities for the flagf -vector of polytopes to higher
dimensions. Known inequalities that can be lifted using this technique are the non-negativity of
the toric g-vector and that the simplex minimizes thecd-index. We obtain new inequalities for
six-dimensional polytopes. In the last section we present the currently best known inequalities
for dimensions 5 through 8.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The flag f -vector of a convex polytope contains all the enumerative incidence in-
formation between the faces. Thus to classify the set of all possible flagf -vectors
is one of the great open problems in discrete geometry. To date only partial results
to this problem have been obtained. For the case when the polytopes are simpli-
cial (and dually, simple), the problem reduces to classifying thef -vectors of sim-
plicial polytopes. This major step was solved by the combined effort of Billera and
Lee [7] and Stanley[19]. Returning to the general case, the classification of flagf -
vectors of three-dimensional polytopes was done by Steinitz[24] almost 100 years
ago. By Euler’s relation the number of edgesf1 is determined by the number ver-
tices f0 and the number of facesf2. Steinitz proved thatf0 and f2 satisfy the
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two inequalities

f2 � 2 · f0 − 4 and f0 � 2 · f2 − 4. (1.1)

Interestingly, the reverse is also true. Given two integersf0 and f2 that satisfy the
two inequalities in (1.1), there is a three-dimensional polytope withf0 vertices andf2
faces. For four-dimensional polytopes the problem remains open. The article by Bayer
[1] contains the current state of knowledge for four-dimensional polytopes.
The first step toward classifying flagf -vectors was taken by Bayer and Billera[2].

They described all the linear redundancies occurring among the flagf -vector entries
of a polytope. These relations are known as the generalized Dehn–Somerville relations.
They imply that flagf -vectors of polytopes lie in a subspace of dimensionFn, where
Fn denotes thenth Fibonacci number.
The next natural step is to look for linear inequalities that the flag vectors of polytopes

satisfy. One such example is the toricg-vector. It measures the intersection homology
Betti numbers of the toric variety associated with a rational polytope. The entries of
the toric g-vector are linear combinations of the entries of the flagf -vector. Stanley
[21] proved that the toricg-vector of a rational polytope is non-negative using the hard
Lefschetz theorem. Using rigidity theory, Kalai[12] proved that the second entry of the
toric g-vector of any polytopeP is non-negative. Recently, Karu[14] proved the hard
Lefschetz theorem for combinatorial intersection cohomology, and as consequence the
toric g-vector is non-negative for all polytopes. More inequalities can be obtained by
using a convolution due to Kalai[13]. However, this is far from being an exhaustive
list. See the work of Stenson[25].
A different direction of research involves thecd-index, a non-commutative polynomial

which encodes the flagf -vector of a polytope without linear redundancies[4]. Stanley
[22] proved that thecd-index of a polytope has non-negative coefficients. This important
result foreshadowed the central role thecd-index would later play in advancing the
frontiers of polytopal inequalities. The next step was taken by Billera and Ehrenborg
who proved that thecd-index is minimized coefficientwise on then-dimensional simplex
�n [5]. This gives a sharpening of Stanley’s inequalities.
The purpose of this paper is to describe a new lifting technique for polytopal in-

equalities; see Theorem3.1. Given a linear inequality onk-dimensional polytopes, we
can produce inequalities in dimensions larger thank. For instance, when applying the
lifting technique to the minimization inequalities of Billera–Ehrenborg, we obtain a
large class of inequalities; see Theorem3.7. One consequence is that the coefficients
of the cd-index are increasing when replacingc2 with d. Hence thecd-monomial
with the largest coefficient in thecd-index of a polytope has no consecutivec’s; see
Corollary 3.9. Another inequality that will generate more inequalities when lifted is the
non-negativity of the toricg-vector; see Theorem4.4.
Using our lifting technique we can now explicitly state the currently best known

inequalities for polytopes of low dimensions. Dimension 4 has been described by Bayer
[1]. We describe the inequalities for five-dimensional polytopes in Section5. Since one
can deduce many inequalities by applying the Kalai convolution, we only present the
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irreducible inequalities for polytopes in dimensions 6 through 8. In the last section we
discuss open problems and further research.

2. Preliminaries

Let P be ann-dimensional polytope. ForS = {s1, . . . , sk} a subset of{0,1, . . . , n−
1}, definefS to be the number of flags (chains) of facesF1 ⊆ F2 ⊆ · · · ⊆ Fk such
that dim(Fi) = si . The 2n valuesfS constitute the flagf -vector of the polytopeP .
Let a and b be two non-commutative variables. ForS a subset of{0, . . . , n − 1} de-
fine a polynomialvS of degreen by letting vS = v0v1 · · · vn−1 where vi = a − b
if i /∈ S and vi = b otherwise. Theab-index �(P ) of a polytopeP is defined
by

�(P ) =
∑
S

fS · vS,

whereS ranges over all subsets of{0, . . . , n − 1}. The ab-index encodes the flagf -
vector of a polytopeP . Its use is demonstrated by the following theorem, due to Bayer
and Klapper[4].

Theorem 2.1. Let P be polytope. Then theab-index ofP , �(P ), can be written in
terms ofc = a+ b and d = a · b + b · a.

When �(P ) is expressed in terms ofc and d, it is called thecd-index. Observe
that c has degree 1 andd has degree 2. Hence there areFn cd-monomials of degree
n, whereFn is thenth Fibonacci number. The flagf -vector information is encoded as
the coefficients of these monomials. Also knowing thecd-index of a polytope is the
same as knowing the flagf -vector.
The existence of thecd-index is equivalent to the generalized Dehn-Somerville rela-

tions due to Bayer and Billera[2]. These relations are all the linear relations that hold
among the entries of the flagf -vector. Thecd-monomials offer an explicit linear basis
for the subspace cut out by the generalized Dehn–Somerville relations.
In order to discuss inequalities for polytopes, define a bilinear form〈·|·〉 : R〈c,d〉 ×

R〈c,d〉 −→ R by 〈u|v〉 = �u,v for all cd-monomialsu and v. A linear functional
L on the flagf -vectors ofn-dimensional polytopes can now be written in terms of
the bilinear form asL(P ) = 〈z|�(P )〉, wherez is a cd-polynomial homogeneous of
degreen.
Kalai’s convolution is defined as follows; see[13]. Let M and L be two linear

functionals on flagf -vectors ofm- and n-dimensional polytopes, respectively. Define
the linear functionalM ∗ L on (m+ n+ 1)-dimensional polytopesP by

(M ∗ L)(P ) =
∑
F

M(F) · L(P/F),
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whereF ranges over allm-dimensional faces ofP and P/F denotes the face figure
of F . It is straightforward to see that ifM and L are non-negative on all polytopes
then so is their convolutionM ∗ L.
Kalai’s convolution defines a convolution onR〈c,d〉 by

〈z ∗ w|�(P )〉 =
∑
F

〈z|�(F )〉 · 〈w|�(P/F )〉.

This convolution has an explicit expression in terms ofcd-polynomials. The following
result is independently due to Mahajan[15], Reading[18], and Stenson[25].

Proposition 2.2. For two cd-monomialsu and v we have

uc ∗ cv = 2 · uc3v + udcv + ucdv,

ud ∗ cv = 2 · udc2v + ud2v,

uc ∗ dv = 2 · uc2dv + ud2v,

ud ∗ dv = 2 · udcdv.
Also we have1∗ 1= 2 · c, 1∗ cv = 2 · c2v+ dv, 1∗ dv = 2 · cdv, uc∗ 1= 2 · uc2+ ud
and ud ∗ 1= 2 · udc.

Proof. [Sketch] Consider the coproduct� on R〈c,d〉 that first appeared in[11]. It is
defined by�(c) = 2 · 1⊗ 1 and�(d) = c ⊗ 1+ 1⊗ c and satisfies the Newtonian
identity �(u · v) = ∑

u u(1) ⊗ u(2) · v +∑
v u · v(1) ⊗ v(2). It is now enough to observe

that the bilinear form〈·|·〉 is a Laplace pairing, that is,

〈u ∗ v|w〉 =
∑
w

〈u|w(1)〉 · 〈v|w(2)〉;

see[10]. From these facts all the relations in the proposition follow.�

Proposition2.2 can be rewritten into the following more compact form. Factor the
monomial u as u = u1u2 where u2 = c if u ends with ac and u2 = 1 otherwise.
Similarly, factor v = v1v2 where v1 = c if v begins with ac and v1 = 1 otherwise.
Then the Kalai convolutionu∗v is equal tou1pv2 wherep is determined by the table

u2 v1 p

1 1 2c
1 c 2c2 + d
c 1 2c2 + d
c c 2c3 + dc+ cd
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As a corollary we obtain the following result:

Corollary 2.3. Let u, q, r and v be four cd-monomials such thatu does not end in
c and v does not begin withc. Then the following associative law holds between the
product and the Kalai convolution:

u · (q ∗ r) · v = (u · q) ∗ (r · v).

As a remark, whenq differs from 1 we can omit the condition thatu does not end
in c. Similarly, whenr differs from 1 we can omit the condition thatv does not begin
with c. However, in what follows we will not be needing this slightly more general
setting.
On the algebraR〈c,d〉 there is a natural antiautomorphismw �−→ w∗ defined by

reversing each monomial; see[11]. This is also an antiautomorphism with respect to
the Kalai convolution. On the geometric level it corresponds to the dual polytopeP ∗,
that is, �(P ∗) = �(P )∗. Hence for an inequality〈H |�(P )〉 � 0 we also have the
dual inequality〈H ∗|�(P )〉 � 0.

3. The lifting theorem

We now present our lifting theorem. It allows us to obtain more inequalities on the
flag f -vectors of polytopes.

Theorem 3.1. LetH be acd-polynomial such that the inequality〈H |�(P )〉 � 0 holds
for all (rational) polytopesP . Then for all(rational) polytopesP we have the inequality

〈u ·H · v|�(P )〉 � 0,

whereu and v are cd-monomials such thatu does not end inc and v does not begin
with c.

In order to prove this theorem, let us introduce two partial orders oncd-polynomials.

Definition 3.2. Let H , z andw be threecd-polynomials.

(1) Define the relationz4Hw if we have〈u ·H · v|w− z〉 � 0 for all cd-monomialsu
and v such thatu does not end withc and v does not begin withc.

(2) Define the relationz4′
Hw if we have〈u ·H · v|w− z〉 � 0 for all cd-monomialsu

and v such thatu does not end withc, v does not begin withc and v is different
from 1.

Observe that in the definition of the relationz4′
Hw the requirement thatv �= 1

implies thatv begins with ad. Moreover, the conclusion of Theorem3.1 can now be
stated as�(P )¡H0.
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Proposition 3.3. The two relationsz¡′
H0 and w¡H0 together imply thatz · c + w ·

d¡′
H0.

Proof. We would like to verify that〈u ·H · v|z · c+w · d〉 � 0 for all cd-monomials
u and v such thatu does not end withc, v does not begin withc and v is different
from 1. If v = v′ · c thenv′ �= 1 and the left-hand side is given by〈u ·H · v′|z〉, which
is non-negative by the assumptionz¡′

H0. If v ends with ad then the left-hand side is
non-negative by the relationw¡H0. �

Proof of Theorem 3.1.Assume without loss of generality thatH is homogeneous of
degreek. Let P be ann-dimensional polytope. Using the result of Bruggesser and
Mani [9], there is a line shellingF1, . . . , Fm of the polytopeP , whereF1, . . . , Fm are
the facets ofP . Consider the following two statements:

(a) Thecd-index �(P ) satisfies�(P )¡H0.
(b) The following string of inequalities holds, where�′ denotes the semisuspension of

the cell complex�; see[5,22]:

04′
H�(F ′

1)4
′
H�((F1 ∪ F2)′)4′

H · · ·4′
H�((F1 ∪ · · · ∪ Fm−1)

′) = �(P ).

We will prove these two statements by induction on the dimensionn. The induction
basis isn � k+ 1. In that case observe that there is nothing to prove in statement (b).
In statement (a) there is nothing to prove, unlessn = k, in which the statement is just
the assumption of the theorem.
We next prove (a) in dimensionn − 2 and (b) in dimensionn − 1 imply (b) in

dimensionn. By Billera and Ehrenborg[5, Lemma 4.2](also in the work of Stanley
[22]) we have that

�((F1 ∪ · · · ∪ Fr)′)− �((F1 ∪ · · · ∪ Fr−1)
′)

= (�(Fr)− �(�′)) · c+ �(��) · d,
where� = (F1 ∪ · · · ∪ Fr−1) ∩ Fr . By induction we know that�(Fr) − �(�′)¡′

H0.
Now consider the set��. We know that� is the union of the facets ofFr that form
the beginning of a line shelling. Thus�� is combinatorially equivalent to an(n− 2)-
dimensional polytope and hence by induction�(��)¡H0. Now by Proposition3.3 we
obtain that

�((F1 ∪ · · · ∪ Fr)′)− �((F1 ∪ · · · ∪ Fr−1)
′)¡′

H0,

completing the proof of (b).
We prove (b) in dimensionn implies (a) in dimensionn by two cases. The first case

when v is different from 1 follows directly by transitivity of all the order relations in
(b), that is, we have 04′

H�(P ). For the second case whenv is equal to 1 we have
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u is different from 1 since deg(u) + deg(v) = n − k � 2. Now the result follows by
applying the inequality 04′

H�(P ) to the dual polytopeP ∗ using the dual order4′
H ∗ .

Observe that when〈H |�(P )〉 � 0 holds for rational polytopesP , the presented proof
holds with a few remarks. In the first part observe that�′ is a shelling component of
the rational polytopeFr , hence�(Fr) − �(�′)¡′

H0. Moreover,�� can be obtained
by a rational projection so that it is combinatorially equivalent to a rational polytope.
Hence the first part of the proof holds in the rational case. Since the dual polytope
of a rational, polytope is also rational we have that the second part of the proof also
holds for rational polytopes.�
We present two examples of Theorem3.1.

Example 3.4.We have that〈ck|�(P )〉 = �k,dim(P ) � 0. Since everycd-monomialw
factors into the formw = ck ·v, wherev does not beginc, we have that〈w|�(P )〉 � 0.
This is Stanley’s result that thecd-index of a polytope has non-negative coefficients;
see[22].

The next example shows that it is not necessary to lift inequalities obtained by the
Kalai convolution. Instead, it is better to first lift each term and then convolve the lifted
inequalities.

Example 3.5.Assume that fori = 1,2 we have the inequalities〈Hi |�(P )〉 � 0. By
Corollary 2.3 the lifting of the convolved inequality gives

〈(u ·H1) ∗ (H2 · v)|�(P )〉 = 〈u · (H1 ∗H2) · v|�(P )〉 � 0. (3.1)

Now instead lift each of the inequalities and then convolute. This gives

〈(u1 ·H1 · v1) ∗ (u2 ·H2 · v2)|�(P )〉 � 0. (3.2)

Observe that the inequality in (3.1) is a special case of the inequality in (3.2).

We end this section with a large class of inequalities. Forq a cd-monomial of
degreek, let �q denote the coefficient ofq in the cd-index of the k-dimensional
simplex,�(�k).

Lemma 3.6. For a cd-monomialq and non-negative integersi and j , we have

�ci ·q·cj � �q .

Proof. By symmetry it is enough to prove that�q·c � �q . We have

〈q · c|�(�k+1)〉 = 〈q · c|�(�k) · c+G(�(�k))〉
� 〈q · c|�(�k) · c〉
= 〈q|�(�k)〉,
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where the first step is the pyramid operation developed in[11] and the second step
uses that the derivationG introduced in[11] preserves non-negativity. �

Theorem 3.7. Let P be a polytope of dimensionn and let u, q and v be threecd-
monomials such that the sum of the degrees ofu, q and v is n and the degree ofq is
k. Then we have

〈u · q · v|�(P )〉 � �q · 〈u · ck · v|�(P )〉. (3.3)

Proof. Factoru and v so thatu = u′ · ci , v = cj · v′, and u′ does not end inc and
v′ does not begin withc. Finally, let q ′ = ci · q · cj and k′ = k + i + j . Thus the
monomialq ′ has degreek′. Billera and Ehrenborg[5] proved that thecd-index over all
k′-dimensional polytopes is coefficientwise minimized on thek′-dimensional simplex
�k′ . Apply this to thecd-monomial q ′, we have〈q ′|�(P )〉 � 〈q ′|�(�k′)〉 = �q ′ =
�q ′ · 〈ck′ |�(P )〉. Thus we can write〈q ′ − �q ′ · ck′ |�(P )〉 � 0. Lifting this inequality
we have〈u′ · (q ′ − �q ′ · ck′

) · v′|�(P )〉 � 0. Expanding this inequality in terms ofu, q
and v and applying Lemma3.6, we obtain the desired result.�

The first dimension that Theorem3.7 says something new about polytopes is dimen-
sion 6. This is the case whenu = 1, q = dc2 and v = d, and the dual caseu = d,
q = c2d and v = 1. See inequalities(5.6.3) and (5.6.3∗) in Theorem5.6. Moreover,
allowing the two monomialsu and v in Theorem3.7 to end, respectively, begin, with
a c does not give any sharper inequalities.
We have two direct corollaries of Theorem3.7.

Corollary 3.8. The cd-index of a polytopeP satisfies the following inequalities:

〈u · cidcj · v|�(P )〉 �
((
i + j + 2

i + 1

)
− 1

)
· 〈u · ci+j+2 · v|�(P )〉,

〈u · di · v|�(P )〉 � E2i+1/2
i · 〈u · c2i · v|�(P )〉,

for any twocd-monomialsu and v and whereEn denotes thenth Euler number.

Proof. By Theorem3.7 it is enough to observe that�cidcj = (
i+j+2
i+1

) − 1, and
�di = E2i+1/2i . The second statement follows from[6, Proposition 8.2]. �

Corollary 3.9. Let P be a polytope. Then the largestcd-coefficient in�(P ) corre-
sponds to acd-monomial having no consecutivec’s.

Proof. Apply Theorem3.7 with q = d recalling that�d = 1. �
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Observe that the maximum is not necessarily unique, as demonstrated by thecd-index
of a triangle,�(�2) = c2 + d.

4. Lifting the toric g-vector

We now turn our attention to the toricg-vector. It is defined by a recursion; see
for instance, Stanley[20, Chapter 3.14]. However we build on the work of Bayer–
Ehrenborg who described the toricg-polynomial in terms of thecd-index. Recall that
the toric g-vector is formed from the coefficients of theg-polynomial, that is,

g(P, x) =
�n/2�∑
i=0

gni (P ) · xi.

Before we begin, a few definitions are necessary. Definep(k, j) to denote the difference(
k
j

)− (
k
j−1

)
. Also we need two polynomial sequences. First defineQk(x) by Qk(x) =∑�(k−1)/2�

j=0 (−1)j ·p(k−1, j) ·xj . Now defineTk(x) for k odd asTk(x) = (−1)(k−1)/2 ·
C(k−1)/2 · x(k−1)/2, whereCn = p(2n, n) denotes thenth Catalan number. For evenk,
let Tk(x) = 0. We are now able to state the result of Bayer and Ehrenborg[3, Theorem
4.2].

Theorem 4.1. Let g be the linear map fromR〈c,d〉 to R[x] such that

g(ck1dck2d · · ·dckrdck) = xr ·Qk+1(x) ·
r∏
j=1

Tkj+1(x). (4.1)

Then the toricg-polynomial of a polytopeP is described byg(�(P )) = g(P, x).

Observe that the entrygni in the toricg-vector is a linear functional oncd-polynomials
of degreen. Hence we viewgni as a homogeneouscd-polynomial of degreen such that

〈gni |�(P )〉 = gni (P ),

for all n-dimensional polytopesP .
For v a cd-monomial of degree 2i we define a polynomialb(v, n) in the variable

n. If v cannot be written in terms ofc2 and d then b(v, n) = 0. Otherwise let

b(v, n) = (−1)i−r ·
r∏
j=1

C"j · p(n− 2i + 2"r+1, "r+1),

wherev = c2"1dc2"2d · · ·dc2"r+1.
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Theorem 4.2. The toric cd-polynomialgni is described by

gni =
(∑

v

b(v, n) · v
)

· cn−2i ,

where the sum ranges over allcd-monomialsv of degree2i.

Proof. Let [xi]p(x) denote the coefficient ofxi in the polynomialp(x). To expand
the toric cd-polynomial gni in terms of the monomial basis, we need to calculate

〈gni |ck1dck2d · · ·dckrdck〉 = [xi]g(ck1dck2d · · ·dckrdck)

= [xi]xr ·Qk+1(x) ·
r∏
j=1

Tkj+1(x). (4.2)

Observe first if any of thek1, . . . , kr are odd, the expression vanishes. Thus we may
assume thatk1, . . . , kr are all even. Observe that the smallest power ofx appearing in
(4.2) is r +∑r

j=1 kj /2 = (n − k)/2. Hence fori < (n − k)/2 the coefficient ofxi is
equal to zero. Thus fork < n− 2i we have that

〈gni |ck1dck2d · · ·dckrdck〉 = 0.

Thus the onlycd-monomials that appear in thecd-polynomialgni must havek � n−2i
and all thek1, . . . , kr even.
Let kr+1 be 2i − 2r −∑r

j=1 kj such thatv = ck1dck2d · · ·dckrdckr+1 has degree 2i
and let"j = kj /2. Continuing to expand (4.2) we have

[xi]xr ·Qk+1(x) ·
r∏
j=1

Tkj+1(x) = (−1)
∑r
j=1 kj /2 ·

r∏
j=1

Ckj /2 · [xkr+1/2]Qk+1(x)

= (−1)
∑r+1
j=1 "j ·

r∏
j=1

C"j · p(k, "r+1).

This expression isb(v, n) sincek = n− 2i + 2"r+1. �

The three first examples of Theorem4.2 aregn0 = cn, gn1 = dcn−2 − (n− 1) · cn and

gn2 = d2cn−4 − c2dcn−4 − (n− 3) · dcn−2 +
((
n− 1

2

)
− 1

)
· cn.

Observe thatb(v,2i) = b(v∗,2i) for v of degree 2i. From this the classical duality
g2ii = g2ii

∗
follows.
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Proposition 4.3. The toric cd-polynomialgki satisfies the following identity:

gki · cj =
i∑

m=0

(
j + i −m− 1

i −m

)
· gk+jm .

Proof. Observe that there is nothing to prove whenj = 0. Assuming that the statement
is true whenj = 1, by a straightforward induction the casesj � 2 follow. Thus it is
enough to prove the casej = 1:

gni · c =
i∑

m=0

gn+1
m .

This is equivalent to proving

〈gni · c|w〉 =
〈

i∑
m=0

gn+1
m |w

〉
,

wherew is a cd-monomial of degreen+ 1. Clearly this is true whenw ends with a
d. Thus consider the case whenw = v · c, wherev is a cd-monomial of degreen. For
a polynomialp(x) = ∑deg(p)

i=0 ai · xi let U � m[p(x)] be the polynomial
∑m
i=0 ai · xi .

Now we have

〈
i∑

m=0

gn+1
m |v · c

〉
=

i∑
m=0

[xm]g(v · c)

=
i∑

m=0

[xm]U � �(n+1)/2�[(1− x) · g(v)]

=
i∑

m=0

[xm](1− x) · g(v)

=
i∑

m=0

(
[xm]g(v)− [xm−1]g(v)

)

= [xi]g(v) = 〈gni |v〉,
where the second step is by Bayer and Ehrenborg[3, Proposition 7.10]and the third
step by the inequalitym � i � �n/2� � �(n+ 1)/2�. �

Applying our main result Theorem3.1 to H = gki · cj we have the following result.
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Theorem 4.4. Let P be a polytope of dimensionn, let u and v be any twocd-
monomials such thatu does not end inc, the sum of the degrees ofu and v is n− k

and 2� i � n/2. Then

〈u · gki · v|�(P )〉 � 0.

Theorem4.4 gives a new inequality in dimension 8; see Theorem5.8 inequality
(5.8.10). Similar to Theorem3.7, we do not get any sharper inequalities in Theorem
4.4 by allowing the monomialv to begin with ac.

5. Inequalities for five through eight-dimensional polytopes

The purpose of this section is to present the currently best-known linear inequalities
for polytopes of dimensions 5 through 8. We introduce two notations to simplify the
presentation. First we will writew � 0 instead of the longer〈w|�(P )〉 � 0. Second
for a cd-monomialq of degreek let �k(q) denote the polynomialq−�q ·ck. (Observe
that the super indexk is superfluous since it is given by the degree of the monomialq.)
For instance, inequality (3.3) in Theorem3.7 can be written asu · �k(q) · v � 0. Also
note that the two inequalities�n(dcn−2) � 0 and�n(cn−2d) � 0 are just the classical
statements that ann-dimensional polytope has at leastn+1 vertices, respectivelyn+1
facets.
Before we consider 5 through 8-dimensional polytopes, let us briefly review the

lower dimensional cases. (Also observe that we omit Theorem 5.1 in order to keep the
numbering consistent with the dimensions.)

Theorem 5.2. The cd-index (equivalently thef -vector) of a polygonP satisfies the
inequality:

�2(d) � 0. (5.2.1)

Theorem 5.3. Thecd-index (equivalently thef -vector) of a 3-dimensional polytopeP
satisfies the following two inequalities:

1 ∗ �2(d) � 0, �2(d) ∗ 1 � 0. (5.3.1) (5.3.1∗)

Theorem5.3 is due to Steinitz[24]. As mentioned in the introduction, the converse
of this theorem is the more interesting part. The best known result for four-dimensional
polytopes is due to Bayer[1]:
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Theorem 5.4. Thecd-index(equivalently the flagf -vector) of a 4-dimensional polytope
P satisfies the following list of six inequalities:

�4(dc2) � 0, �4(c2d) � 0, (5.4.1) (5.4.1∗)
g42 � 0, (5.4.2)

1 ∗ �2(d) ∗ 1 � 0, (5.4.3)
c ∗ �2(d) � 0, �2(d) ∗ c � 0. (5.4.4) (5.4.4∗)

We now list the currently best inequalities for 5-dimensional polytopes.

Theorem 5.5. The cd-index of a 5-dimensional polytopeP satisfies the following list
of 13 inequalities:

�5(dc3) � 0, �5(c3d) � 0, (5.5.1) (5.5.1∗)
1 ∗ �4(dc2) � 0, �4(c2d) ∗ 1 � 0, (5.5.2) (5.5.2∗)
1 ∗ �4(c2d) � 0, �4(dc2) ∗ 1 � 0, (5.5.3) (5.5.3∗)
1 ∗ g42 � 0, g42 ∗ 1 � 0, (5.5.4) (5.5.4∗)

c ∗ �2(d) ∗ 1 � 0, 1 ∗ �2(d) ∗ c � 0, (5.5.5) (5.5.5∗)
c2 ∗ �2(d) � 0, �2(d) ∗ c2 � 0, (5.5.6) (5.5.6∗)

�2(d) ∗ �2(d) � 0. (5.5.7)

Before continuing with dimension 6 two observations are needed. First, so far the
inequalities have described a cone. From now on, the inequalities we present determines
a polyhedron. Second, the number of facets of the polyhedron grows rapidly. Hence we
will only list the irreducible inequalities in dimensions 6 through 8, that is, inequalities
that cannot be factored using the Kalai convolution.

Theorem 5.6. The cd-index of a 6-dimensional polytopeP satisfies the following list
of irreducible inequalities:

�6(dc4) � 0, �6(c4d) � 0, (5.6.1) (5.6.1∗)
�6(c2dc2) � 0, (5.6.2)
�4(dc2) · d � 0, d · �4(c2d) � 0, (5.6.3) (5.6.3∗)

g62 � 0, g62
∗ � 0, (5.6.4) (5.6.4∗)

g63 � 0. (5.6.5)

Theorem 5.7. The cd-index of a 7-dimensional polytopeP satisfies the following list
of eight irreducible inequalities:

�7(dc5) � 0, �7(c5d) � 0, (5.7.1) (5.7.1∗)
�7(c2dc3) � 0, �7(c3dc2) � 0, (5.7.2) (5.7.2∗)
�5(dc3) · d � 0, d · �5(c3d) � 0, (5.7.3) (5.7.3∗)

g72 � 0, g72
∗ � 0. (5.7.4) (5.7.4∗)
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Theorem 5.8. Thecd-index of an 8-dimensional polytopeP satisfies the following list
of irreducible inequalities:

�8(dc6) � 0, �8(c6d) � 0, (5.8.1) (5.8.1∗)
�8(c2dc4) � 0, �8(c4dc2) � 0, (5.8.2) (5.8.2∗)
�8(c3dc3) � 0, (5.8.3)
�8(dc2dc2) � 0, �8(c2dc2d) � 0, (5.8.4) (5.8.4∗)
�6(dc4) · d � 0, d · �6(c4d) � 0, (5.8.5) (5.8.5∗)

�4(dc2) · dc2 � 0, c2d · �4(c2d) � 0, (5.8.6) (5.8.6∗)
�4(dc2) · d2 � 0, d2 · �4(c2d) � 0, (5.8.7) (5.8.7∗)
�4(c2d) · dc2 � 0, c2d · �4(dc2) � 0, (5.8.8) (5.8.8∗)

g82 � 0, g82
∗ � 0, (5.8.9) (5.8.9∗)

g62 · d � 0, d · g62∗ � 0, (5.8.10) (5.8.10∗)
g83 � 0, g83

∗ � 0, (5.8.11) (5.8.11∗)
g84 � 0. (5.8.12)

The calculations in Theorems5.5 through 5.8 were carried out in Maple. We end
this section by summarizing some data on these polyhedra. Recall that the Fibonacci
number minus one is the number ofcd-monomials of degreen excluding the monomial
cn. HenceFn − 1 is the dimension of thenth polyhedron.

n 2 3 4 5 6 7 8

Fn − 1 1 2 4 7 12 20 33
# facets of the polyhedron 1 2 6 13 29 60 119
# irreducible facets of the polyhedron1 0 3 2 8 8 22

6. Concluding remarks

Theorem3.1 produces many new inequalities for us to consider. However, these lifted
inequalities do not give an equality when applied to the simplex. Thus it is natural to
consider the following generalization of Theorem3.1.

Conjecture 6.1. Let H be a cd-polynomial such that the inequality〈H |�(L)〉 � 0
holds for all Gorenstein∗ latticesL. Moreover, let u and v be twocd-monomials such
that u does not end inc, v does not begin withc and they are not both equal to1.
Then the following inequality holds for all Gorenstein∗ latticesL of rank n+ 1:

〈u ·H · v|�(L)− �(�n)〉 � 0.

This conjecture extends Conjecture 2.7 of Stanley[23].
One possible method to prove this conjecture for polytopes is to use the following

proposition and conjecture.
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Proposition 6.2. If the inequality�(�n)4 ′
H�(P ) holds for all n-dimensional poly-

topesP then for all n-dimensional polytopesP we have�(�n)4H�(P ).

The proof of this proposition follows the exact same lines as the argument given for
the implication(b) ⇒ (a) in the proof of Theorem3.1.

Conjecture 6.3. Assume thatH is a cd-polynomial homogeneous of degreek such
that the inequality〈H |�(Q)〉 � 0 holds for all k-dimensional polytopesQ. Let P
be an n-dimensional polytope wheren > k. Let F be a face of dimensionm of
P and let F1, . . . , Fr be the facets ofP that contain the faceF . Similarly, let
G1, . . . ,Gn−m be the facets of the simplex�n containing anm-dimensional faceG of
�n. Then

�((G1 ∪ · · · ∪Gn−m)′) 4′
H �((F1 ∪ · · · ∪ Fr)′).

Whenm = 0 this conjecture states that�(�n)4′
H�((F1∪· · ·∪Fr)′). Thus Conjecture

6.1 follows from Proposition6.2 and Conjecture6.3.
It is straightforward to verify Conjecture6.1 for polytopes in the case whenu = 1,

v = dcn−4 andH = d− c2 and dually in the caseu = cn−4d, v = 1 andH = d− c2.
Namely, the inequalitygn2(P ) � 0 can be expressed as:

〈d2cn−4 − c2dcn−4 + (3− n) · dcn−2|�(P )− �(�n)〉 � 0.

To this inequality addn−3 times the inequality〈dcn−2|�(P )−�(�n)〉 � 0 and these
cases follow.
Two questions deserve a deeper study. First, when is a new inequality new? That

is, when is an inequality not implied by non-negative linear combinations of known
inequalities? For instance, we conjecture that in the caseu = 1, H = �n−2(dcn−4) =
dcn−4− (n−3) ·cn−2 andv = d for n � 6 that the associated inequality is not implied
by the non-negativity of the toricg-vector, the minimization inequalities offered by
the simplex or the Kalai convolutions of these inequalities. Second, when do we stop
trying to find linear inequalities? In other words, how do we recognize that we have
the smallest polyhedron containing all flagf -vectors of polytopes?
Recall the two inequalities that ann-dimensional polytope has at leastn+1 vertices

and at leastn + 1 facets. In terms of thecd-monomial basis they are expressed as
�n(dcn−2) � 0 and�n(cn−2d) � 0. Observe that in dimensions 4 through 8 these two
inequalities appear as facets of the polyhedra. However, there is only one polytope
appearing on these facets, namely the simplex. Hence it is a challenging problem to
determine if these inequalities are sharp, or if it is possible to sharpen them.
Also when studying the irreducible facet inequalities in Theorems5.5 and 5.7 one

might suspect that the two inequalities〈g52|�(P )〉 � 0 and〈g73|�(P )〉 � 0 are missing.
These inequalities are not facet inequalities. This fact follows from an identity due to
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Stenson[25], namely

(k + 2) · g2k+1
k =

k∑
i=0

(i + 1) · g2ii ∗ g2(k−i)k−i .

Moreover, Stenson proved that the inequalities〈cidcj |�(P ) − �(�n)〉 � 0, where
i, j � 2 and i + j + 2 = n, are not implied by the Kalai convolutions of the non-
negativity of the toricg-vector. These inequalities are expressed as�n(cidcj ) � 0 in
Theorems5.6 through5.8.
Meisinger, Kleinschmidt and Kalai proved that a 9-dimensional rational polytope has

a 3-dimensional face that has less than 78 vertices or less than 78 faces[16]. However,
with the recent proof that the entries in the toricg-vector are non-negative[14], their
result now extends to all polytopes. Their proof uses the following observation. Assume
that P is a 9-dimensional polytope with every 3-dimensional face having at leastm

vertices and at leastm faces. If the inequality〈L|�(Q)〉 � 0 holds for all 5-dimensional
polytopes then the two inequalities

〈(dc− (m− 2) · c3) ∗ L|�(P )〉 � 0 and 〈(cd− (m− 2) · c3) ∗ L|�(P )〉 � 0

also hold. Hence consider the system of linear inequalities




〈(dc− 76c3) ∗ L|z〉 � 0,

〈(cd− 76c3) ∗ L|z〉 � 0,

〈K|z〉 � 0,

where L ranges over linear inequalities for 5-dimensional polytopes andK ranges
over linear inequalities for 9-dimensional polytopes. They showed that this system
is infeasible which implies that there is no 9-dimensional polytope with all its 3-
dimensional faces having at least 78 vertices and at least 78 faces. Using this technique
and the inequalities derived from Theorem3.1, we were able to improve upon the
constant 78.

Theorem 6.4. A 9-dimensional polytope has a 3-dimensional face that has less than
72 vertices or less than72 faces.

There are quadratic inequalities known on the entries of the flagf -vector. Two large
classes of quadratic inequalities are given by Braden and MacPherson[8] and Billera
and Ehrenborg[5]. However, quadratic inequalities are not as fundamental as linear
inequalities. That is, the set of flagf -vectors of convex polytopes seems to have as a
first good approximation the polyhedron determined by linear inequalities. Very little
is known about this issue and it deserves a deeper study.
It would be interesting to continue the work of Readdy[17], who studied the question

of determining the largest coefficient of theab-index of certain polytopes. Thus to
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continue Corollary3.9 it would be interesting to determine which coefficient of the
cd-index is the largest for different polytopes. In a recent preprint[15] Mahajan proved
that in thecd-index of the simplex�n the monomials with the largest coefficient are
given by

{
cd(n−2)/2c if n is even,
cdcd(n−5)/2c and cd(n−5)/2cdc if n is odd,

for n sufficiently large.
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