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Abstract. We prove thatthed-index of a convex polytope satisfies a strong
monotonicity property with respect to thel-indices of any face and its
link. As a consequence, we prove fédimensional polytopes a conjecture
of Stanley that thed-index is minimized on the-dimensional simplex.
Moreover, we prove the upper bound theorem fordiéndex, namely that
thecd-index of anyd-dimensional polytope with vertices is at most that
of C'(n,d), thed-dimensional cyclic polytope with vertices.

1 Introduction

The problem of determining the relations between the numbers of faces of
all dimensions in convex polytopes is one that has amused mathematicians
for hundreds of years. For the case of 3-dimensional polytopes, this problem
was settled more than 90 years ago by Steinitz [31]. Nearly 20 years ago, the
problem was completely settled in arbitrary dimension for the mutually dual
cases of simplicial and simple polytopes — those with vertices, respectively,
facets, in general position [10, 26]. Yet in spite of some progress, and no lack
of effort, the general solution remains elusive. See [7] for a brief survey and
references to some of the more recent work in this area. In particular, [1] and
[6] describe the current incomplete state of knowledge about inequalities for
face numbers of-dimensional polytopes.

The form of the solution in the simplicial case is of interest here. Rather
than working directly with the numbers of faces of each dimension (the
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f-vector), two linearly equivalent derived invariants are considered,the
polynomial and they-polynomial. These were introduced in this context
by McMullen [22], who showed by means of a shelling argument that the
h-polynomial of a simplicial polytope always has nonnegative coefficients
and it is maximized, over all simplicial-dimensional polytopes with
vertices, by the cyclic polytop€'(n,d) (the convex hull ofn points on

the moment curvét, t2, . .., t%)). The latter is known as theépper Bound
Theorentor polytopes, since it implies that fatl d-dimensional polytopes
with n verticesC'(n, d) maximizes the number of faces of all dimensions.
One key part of the characterization pfvectors in the simplicial case is
the so-calledseneralized Lower Bound Theorewhich states that over all
convexd-dimensional polytopes, thgpolynomial is minimized termwise
on thed-dimensional simplex. This fact gives all the linear inequalities that
hold for f-vectors of simplicial polytopes.

For the case of generdtdimensional polytopes, there has been some
effort to understand more than just tfievector. Theflag f-vectoris an in-
variant that includes the full enumerative information about chains of faces
in the polytope, and so includes the usyabector, reducing to the latter
in the case of simple or simplicial polytopes. In [2] all the linear relations
holding for flag f-vectors of polytopes (or, more generally, Eulerian par-
tially ordered sets) are obtained via the Euler relations holding for intervals
of faces. Thecd-index is a derived invariant that efficiently encodes infor-
mation carried by the flag-vector [5].

By means of a shelling argument, Stanley [29] showed thatdkhiedex
is termwise nonnegative for a class of objects somewhat more general than
convex polytopes. Since the coefficients of dakindex of the simplex are
all positive, this does not establish that Hikindex is minimized over poly-
topes by the simplices. However, he conjectured more generally that among
all Gorensteifi lattices the Boolean algebra has the termwise smaltést
index [30, Conjecture 2.7]. The zonotopal analogue of Stanley’s conjecture
was proved by the authors and Readdy [8], hamely, among all zonotopes (or
more generally all oriented matroids) the cube has the smakkgtdex.
Other inequalities giving evidence of this conjecture were given by Ehren-
borg and Fox [14].

By extending the methods of Stanley and McMullen, we show here that
the cd-index of any convexi-dimensional polytope is termwise as large
as that of thel-dimensional simplex, establishing Stanley’s conjecture for
polytopes. Further, we show the corresponding upper bound theorem for
the cd-index: over alld-dimensional polytopes with vertices, the cyclic
polytopeC(n, d) has the termwise largest-index. Our methods actually
produce much stronger lower bounds. We show thatthédex satisfies a
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strong version of the submultiplicative property of trpolynomial proved
recently by Braden and MacPherson [12].

In Sect. 2, we give the basic definitions concerning polytopes, Eulerian
posets and thed-index. This includes a brief introduction to the coalgebra
notions that come into play in proving the upper bound theorem. Section 3
contains some identities involving tkd-index of the boundary of a regular
cellular ball and of the regular cellular sphere obtained by attaching two such
balls along their common boundary. We compute ¢deindex of partial
shellings in Sect. 4 and use this in Sect. 5 to prove the submultiplicative
inequalities. Section 6 is dedicated to the proof of the upper bound theorem.
Finally, some consequences of these results for inequalities on thg-flag
vector are considered in Sect. 7.

2 Polytopes, Eulerian posets and thed-index

A partially ordered se{poset)P is graded if it has a minimal eleme6ft
maximal element, and for every element in the poset, every maximal
chain from0 to z has the same length. Let the rank of an element(x),
be the length of a maximal chain frobrto 2. We callp(P) = p(0,1) the
rank of the poseP. Forz < y definep(z, y) to be equal te(y) — p(x) and
define thantervalfromz toy to be sef{z : z < z <y}, denotedz, y|.
Observe thafz, y| is a graded poset of ranKz, y).

For a graded posét of rankd + 1 the flagf-vector is defined as follows.
For S asubset of1,2,...,d} let fg be the number of chains @t whose
ranks are exactly given by the sgtThat is,

fs=H0=mo <o < <appr=1 1 plai) = s},

whereS = {s1 < --- < s }. A stepping stone in the study of flag vectors
is the flagh-vector. It is given by the invertible relation (and corresponding
inverse relation):

hs =Y (-0 Tl fp and fo=> hy.

TCS TCS

Hence the flagf-vector and the flag-vector carry the same information
about the poset.

Leta andb be two non-commuting variables. Forasulfsef{1,2,.. .,
d}, defineug to be theab-monomialu - - - ug whereu; = aif i ¢ S and
u; = bif i € S. Theab-indexof a posetP of rankd + 1, ¥ (P), is defined
by

W(P)=> hg-us,
S
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where the sum ranges over all subsgtsf {1,2,...,d}. Observe theb-
index encodes exactly the same information as the/flagctor. Moreover
¥ (P) is a homogeneous polynomial of degree

Another way to view theab-index is by assigning a weight to each chain
in the posetP. For a chainc = {0 = 29 < 2y < --- < x4 = 1} let the
weightof the chainc be the productvt(c) = w; - - - wq, Where

w— J P ifie{p(@), ... p(z)},
"7 ] a— b otherwise.

Then theab-index is given by the sum
w(P)=> wt(c),

wherec ranges over all chains in the poget
TheM0bius functionu(z, y) is defined forr, y € P by p(z, z) = 1 and
forz <yinPby> . ., u(z, z) = 0. AposetP is calledEulerianif the

M@obius function satisfieg(xz,y) = (—1)?(*¥). There are linear relations
among the entries of the flg@vector of an Eulerian poset, called then-
eralized Dehn-Sommerville relatiordiscovered by Bayer and Billera [2].
Fine observed and Bayer and Klapper [5] proved that whResa Eulerian
theab-index of P can be written in terms of the non-commuting variables
c=a+bandd = a-b + b-a. The resulting polynomial is called the
cd-index In fact, they showed that thel-index exists for a poset if and only
if the flag f-vector of the poset satisfies the generalized Dehn-Sommerville
relations. Stanley gave another elementary proof of the existence of the
cd-index in [29]; see also the discussion in Sect. 3.

Let Z(c,d) be the ring of polynomials in the variablesandd, and
let the degree o€ be 1 and the degree ad be 2. For a posetP, let P*
denote thedual poset. The poseP* has the same underlying set Bdut
with the order relation: <p- y if x >p y. Similarly, for acd-monomial
V=109 - - - Up, l€tV* = v, - - - vou1. By linearity we extend this operation
to be an involution or%(c, d). Observe for an Eulerian pos€twe have
U(P*) =w(P)*.

For twocd-polynomialsv andw, we definev < w if the cd-polynomial
w—wv has nonnegative coefficients. Observe that compakingolynomials
coefficientwise is stronger than comparag-polynomials since a polyno-
mial can have nonnegative coefficients asaknpolynomial but not as a
cd-polynomial (for examplea? + b? = ¢? — d).

An important tool in studying thed-index is that thed-index is a coal-
gebra homomorphism. We give a short explanation here; for basic notions
of coalgebras, see [24,32]. For more information on the coalgebra discussed
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here, we refer the reader to [17]. We extend the fir{g, d) to a coalge-
bra; that is, we enrich the ring with a coprodutt which is a linear map
A :Z(c,d) — Z(c,d) ® Z(c,d). We will use the Sweedler notation for
the coproduct; hence for the elemekttw) we write) -, w1y ®@w(q). We de-
fine our coproducti by A(c) = 2-1®1, A(d) = c®1+1®c, and otherwise
by the Newtonian conditiol (u-v) = >~ u)@u(2)- v+, u-v1)@v(2)-.
Observe thaZ(c, d) is a coalgebra without a counit.

Let the vector spacé€ be spanned by all isomorphism types of Eu-
lerian posets of rank greater than or equal to one. Observeithat-
tends to a linear map fror§ to Z(c,d). Define a coproduct o& by
A(P) =3 4,-110,2] ® [z, 1] for an Eulerian poseP and extend by lin-
earity to the spacé. Ehrenborg and Readdy [17] proved that dakindex
¥ is a coalgebra homomorphism from the coalgebra of Eulerian pésets
to the coalgebr&(c,d). We will use this result in the following form. Its
importance is that convolution of two linear maps over an intemval] can
be computed by only knowing thed-index ¥([z, z]) and not the whole
poset structure of the interval.

Proposition 2.1 LetL and M be linear maps fror(c, d) into aring. Then
the convolution ofL and M on the interval[z, z| of an Eulerian poset is
given by

> L@ (wy)) - M ([y,2]) = D Llwg)) - M(we)),

r<<y<z
wherew is thecd-polynomial¥ ([, z]).

The face lattice of d@-dimensional convex polytope is an Eulerian poset
of rankd + 1, hence al-dimensional convex polytope hasd-index of
degreead associated to it. Note that i? is a polytope andd C F' are faces
of P, then the intervalH, F'] in the face lattice ofP is the face lattice of
a convex polytope, denoteld/ H. In particular|(), '] is the face lattice of
the faceF. Thus, for a polytope® we will write ¥(P) for ¥([(), P]) and,
more generally (F/H) for ¥([H, F]). Also recall that the face lattice of
the polarP* of a polytopeP is the dual of the face lattice df.

The coalgebra techniques in [17] were used to show hovedhimdex
of convex polytopes changes under certain geometric operations. One of
them is essential to us. On the rifigc, d) define a derivatioid by letting
G(c) = d andG(d) = cd. Also define a linear operator Pyr on the ring
Z{c,d) by

Pyrw) =w - ¢+ G(w).
It is straightforward to check that
Pyr(u-v) = G(u) - v+ u - Pyr(v). (2.1)

Itis proved in [17] that:
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Theorem 2.2 (Ehrenborg-Readdy)For a polytopeP let Pyr(P) denote
the pyramidover P, that is, the convex hull of a point not in the affine
span of P with the polytopeP. Then thecd-index ofPyr(P) is given by

v (Pyr(P)) = Py (P)).

Since the pyramid operation commutes with polarity, we have that for a
cd-polynomialw that Py(w)* = Pyr(w™*).

A polytope is said to beimplicialif every facet is a simplex. The flag
vector for simplicial polytopes depends only on jleector or, equivalently,
the h-vector (see, for example, [87]). Stanley [29] gave thed-index of
simplicial polytopes in terms of the-vector:

d
= Z hi- @4,
i=0

where thed,; arecd-polynomials. The polynomial®, ; satisfy the fol-
lowing recursion

Dyi1i41 = G(Pay), (2.2)
with the boundary conditions:

d

éop =1 and éd+1p ::j£:€§¢i‘c.
=0

Hence we have thab,; are nonnegatived-polynomials. The recursion
(2.2) is due to Ehrenborg and Readdy [17]. There are many other recursions
for qﬁdﬂq see [15], or [19], where there is also a combinatorial interpretation
for these polynomials.

3 The boundary of a cellular ball

Let P be a graded poset and let< z be two elements irP. Using the
chain definition for theab-index and conditioning on the largest element in
a chain, one obtains that tlad-index of the intervalz, z| is given by

U([z,2]) = (a=b)™I7 4 3" W([r,y]) b (a—b)"»I7 (3.1)
r<y<z
By multiplying on the right witha — b and bringing the tern# ([, z]) - b
to the right-hand side one obtains

(le,2))-a=(a—b)@) £ 3 W(la,y)) - b-(a- by (32)

r<y<z
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Define three functiong, g andh in the incidence algebra d@? by

fag) = { Pl ey < { Pl b <

andh(z,y) = (a — b)?@¥), Then (3.2) can be written gs= ¢ - h where
the product is the convolution of the incidence algebra. Observehthat
is invertible and its inversé ! is given byh~!(z,y) = p(x,y) - (a —
b)~(@Y), wherey(x, y) denotes the Nbius function of the intervalz, y].

By expanding the equivalent relatign= f - h~! we obtain

Ep([CC,z]) b= N(x7 Z) . (a _ b)p(m,z)
+ Z U([z,y]) a-puly,2) - (a— b)p(y,z)'

r<y<lz

By moving the termZ[(z, z)| - a to the left-hand side of the equation and
cancelling a factor ob — a on the right we have:

U([x,z]) = —p(z,2) - (a— b)p(a:,z)—1
_ Z U([x,y])-a-uy,z) - (a— b)p(y,z)fl' (3.3)

r<y<z

Equation (3.3) is an alternative recursion for #ikeindex, which may be
viewed as dual to (3.1). We remark that the trick of dividing with the factor
of b — a is essentially due to &or Hetyei (unpublished). We obtain the
existence of thed-index for an Eulerian poset by adding equations (3.1)
and (3.3), using that(y, z) = (—1)?®?2), and recognizing the terms as
cd-polynomials. This discussion is the essential step in Stanley’s proof of
the existence of thed-index; see the proof of Theorem 1.1 in [29].

We definecd-polynomialsa,, and g, for n > 0 by oy = —1 and
otherwise by

1
Qg = —5 [(c2 —2d)* +c-(c? —2d)"! ~c} ,

1
A2kl = 5 [(CQ —2d)* - c+c- (¢’ - 2d>k} ;

Bor = (¢ —2d)* and fapi1 = —c- (c* —2d)".

The reverses of thed-polynomialss,,, namelys3;:, were used in [16] to see
how thecd-index of a polytope changes when cutting off a face, while their
negatives were used in the existence proof in [29]aRAspolynomials we

have the identity fop3,:
Bn-(a—b)=((-1)"-a—b)-(a—b)".
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Together they,, and3,, satisfy the recurrences
o =Pp2-d—oap_1-c forn > 2, (3.4)
Bn=0n-1-¢—2-an forn > 1. (3.5)

The first recurrence shows that thg also have integer coefficients. Let us
also mention that the,, also satisfy the following recurrence

an+1 = Glay) — ¢ - ay,

even though we will not use it.

Let I" be afinite regular cell (or CW) complex, for instance a polyhedral
complex, such that its underlying spd¢# is a topological ball of arbitrary
dimension. (We shall call such a compleregular cellular ballfrom now
on.) LetP = P(I") be the poset of nonempty cells 6f wherer < o if
7 C &, andP be the poseP with minimum and maximum elemenfisand
1 adjoined. It follows directly from Proposition 3.8.9 of [27] that

e (—1)PwD if y € int(I),
1p(y,1) { 0 otherwise. (50)

We now can give an expression for thb-index of the boundary of " in
terms of thecd-indices of cells in the interior.

Proposition 3.1 Let " be a regular cellular ball. Then

w(or) = Z w(F)- ﬂp(F,i)—l

Feint(I)

Proof. Let P = P(I") and P be as above. Equating the expressions for
@(P) = w([0,1]) given by (3.1) and (3.3), and using (3.6), we get

(a-byP1 4 S v a— b)PD-1
0<F<i
= — Z W(F) - (=1)PFD g (a— p)rED-1,
Feint(I)

Moving all the interior terms to the right-hand side we obtain

(a—b) P14 3" W(F)-b-(a—b)PD!

Feor

= 3 w(rF)- ((_1>p(F,i)*1 a_ b) (a— by

Feint(I)

- Z LD(F) ) ﬁp(F,i)fl : (a - b)

Feint(I")
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Considering the face poset@f” and the expression of itgl-index by (3.1),
we see that the left-hand side of the last equation is equéldd’) - (a—b),
since the face poset 6" has rank one less than thatiof By cancelling a
factor ofa — b on both sides of the last equation, the result follows.

Corollary 3.2 Let P be a polytope andt” a nontrivial face of P. Let
Fy, ..., F,. be all the facets of the polytopB that contains the facé'.
Then
W(a(Fl u---u FT)) = Z W(m) : ﬁp(x,P)—l'
F<x<P

Proof. Observe that, by Lemma 2 and Proposition 2 of [13]}J - - - U F..
is a regular cellular ball whose interior faces are exactly those faces of the
polytopeP which contain the facé".

If I"is aregular cellulad-dimensional ball, then denote BY the regular
cell complex obtained frond’ by attaching a single ned+dimensional cell
7 alongdr’, that is, such tha®I" = d7. Note that|I”| is ad-dimensional
sphere. The proof of Lemma 6.3 in [17] also proves the following.

Lemma 3.3 Let " and A be regular cellulard-dimensional balls such that
o' =0A=TInNA.Then

V(ICUA)=w(I")+w(A)—w(I'NA)-c.

4 Shelling

We discuss in this section the effect of shelling on¢keindex of a poly-
tope. Stanley [29] makes use of a property of Eulerian regular cellular com-
plexes (for example, of regular cellular subdivisions of a sphere) called
S-shellability. He observed that for polytopes that the “line shellings” of
Bruggesser and Mani [13] are alwa¥sshellings as well as shellings in the
classical sense&f-shellings). (For simplicial complexes as well as cubical
complexes S-shellability andC-shellability are equivalent; for a proof of
the latter, see [15].)

Although we will prove some of our results in the generality of regu-
lar cellular complexes, our crucial shelling arguments will be restricted to
polytopes, and in this case shellings will always refer to line shellings. In
particular, we need that for every pair of fagésC F', there exist a (line)
shelling of F' such that all the facets df containingG appear as an initial
segment.

We state first a corollary to the proof of [29, Theorem 2.2] that will be
usefulin what follows. To keep the exposition simpler, we refer the interested
reader to [29] for the definition of-shelling.
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Proposition 4.1 (Stanley)Let Fi,..., F, be anS-shelling of a regular
cellular spheref2. Then

0<¥U(F) <V (RUR))< - <¥(RLU---UF, 1)) =%(9).
Moreover? (F}) = ¥(Fy) - ¢

For ad-dimensional regular cellular sphefe, the coefficient of the
termc?—2d is the number of facets minus two. Hence we observe that each
inequality in Proposition 4.1 is not an equality.

Lemma4.2 LetFy,..., F, be aline shelling of a polytopB. For2 < r <
n—landA=(F,U---UF,_1)NF, we have

U(FLU-—UF)) —O(F U UF_1)) =W(F,) c— () c

Proof. Since line shellings are reversible, botrandI” = (F,4; U --- U
F,) N F, are regular cellulag-dimensional balls. FurthérF,, = AU and
oI’ = 0A =1 N A. Thus by Lemma 3.3,

U(F,) —w(A)=w(I")—w(I)-c. (4.1)
Let¥ := ¥((FU---UF,))—®((F,U---UF,_1)").By[29, Lemma2.1],
W= (§(I")~w(dI) c)-c+w(dI)-d. (4.2)

Substitution of (4.1) into (4.2) completes the proof.

Proposition 4.3 LetF1, ..., F, be aline shelling of a polytopE. Then for
1 <r<n-1we have

V(U UE))= ZW(F) Qp(F,P
F

where the sum is over all nonempty intersectiongof . . , F;

Proof. We proceed by induction on. The caser = 1, that¥(F]) =
W (Fy) - ¢, isincluded in Proposition 4.1. For the inductive step, we have by
Lemma 4.2, Proposition 3.1 and the inductive hypothesis that

V(FAU---UF))=¢(RAU---UF._1))+¥(F)- c
—¥(A)-c+W¥(0A)-d

—ZW Py +W(Fr) -

+ZW o(F.P)—1° €+ Bprp)—2 - d)
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where the first sum on the right is over all nonempty intersectiod$ of. . ,
F,._1, and the second is over all nonempty intersectionsof. . , F,. lying
in F,.. The proof is completed by use of the recurrence (3.4).

Similar to Corollary 3.2 we have

Corollary 4.4 Let P be a polytope and” a nontrivial face of P. Let
Fy, ..., F,. be all the facets of the polytopE that contain the face.
Then

(AU UER)) = Y W(@) apep).
F<z<P

Proof. We may reorder the facefs, . . ., F,. such that they form the initial
segment of a line shelling of the polytoge Then the faces containing

F are precisely intersections of the facets contairfihdNow the equality
follows from Proposition 4.3.

Corollary 4.5 Let P be a polytope and’ a nonempty face aP. Then

U(P)> > W(x)- 0y p)

F<x<P

Proof. The case when the fadeé is the polytopeP follows from the non-
negativity of thecd-index for polytopes. Hence consider the case when the
face F' is a nontrivial face. Let#, . .., F,. be all the facets of the polytope

P that contain the fac&'. Then by Proposition 4.1 we have the inequality

Y(P)>¥((FLU---UE.)").
Now the result follows from Corollary 4.4.

Proposition 4.6 Let [z, z| be an interval in an Eulerian poset. Then

Pyl’(@([x, Z])) = Qp(z,2) = Z Pyl’(W([x, y])) T p(y,2)

r<<y<z

= > ey PY([y, 2])).

r<y<z

Proof. We prove the first identity in the case in which the interjwalz] is
the face lattice of a polytop®. Let Q be the pyramid oveP with apex
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v, and letFy, ..., F,. be a partial shelling of) consisting of all the faces
containingu. Then by Corollary 4.4,

U(Q)=¥((FU---UFE))
= Y ¥(G) a0

v<G<Q

= a,p) + Z PY(W(F)) - ay(r,p),
O<F<P
since every facé; of () containingv is a pyramid over a face d?.
The general case now follows since the flagectors of polytopes lin-
early span the flagi-vectors of all Eulerian posets [2,9]. The second identity
follows by duality andv), = «,.

5 The main theorem

We can now prove the main result of this paper which leads to a proof of

the conjecture of Stanley for polytopes.

Theorem 5.1 For polytopeP and nontrivial faceF' of P,
U(P)>W(F)-Pyr(¥(P/F)), (5.1)
w(P) > Pyr(W(F)) - w(P/F). (5.2)

Proof. It is only necessary to prove the first inequality; the second will
follow by duality. Letx be a face ofP such thatt” < x < P. By applying
Corollary 4.5 to the polytope, we have that

w(m) > Z Ep(y) CQp(y,a)-
F<y<x
Since? ([z, P]) > 0 we have that PY& ([z, P])) > 0. Thus
W(z) - Py ([x, P])) = > #(y) - apya) - PYI ([, P))).
F<y<x
Now sum over allF' < z < P.

Y. ¥(x)-Pyn¥([z, P))

F<x<P
> > Y W(Y) apya) - PV ([, P)))
F<:c<PF<y<a:

= D VW) Y Q- PYIE(, P)))
F<y<P y<z<P

= Y w(y) - (Py([y, P]) — apy.p)) »

F<y<P
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where the last step is by Proposition 4.6. Now by cancelling terms we obtain
F<x<P

Apply now Corollary 4.5 and we have the desired result.

The following is Conjecture 11.1 of [17].
Corollary 5.2 For any polytopeP and facett” of P,

w(P) = Pyr(¥(F)),

and so among polytopes havikgas a facetPyr(F') has the smallestd-
index.

Proof. This follows from the second inequality in Theorem 5.1 since
U(P/F)=1.

Using repeated applications of Corollary 5.2 and the fact the Pigra
nonnegative operator dfc, d), we have proved the conjecture of Stanley
[30, Conjecture 2.7] in the case of polytopes.

Theorem 5.3 For ad-dimensional polytop®, ¥ (P) > ¥(A,), thatis, the
cd-index for d-dimensional polytopes is minimized on thelimensional
simplex.

We also remark that equality in Theorem 5.1 only happens when the
polytope P is a pyramid over another polytoge. In equation (5.1) this
occurs when the facg is the apex vertex, while in equation (5.2) when
is the base polytop€.

Sincew - ¢ < Pyr(w) for a nonnegatived-polynomialw, we conclude
the following.

Corollary 5.4 For any polytope® and nontrivial faceF' of P, thecd-index
W (P) is larger than each of thed-polynomials

c-Y(F)-w(P/F), W(F)-c-¥(P/F) and ¥(F)-¥(P/F)-c.
The following corollary was pointed out to us by Margaret Readdy.

Corollary 5.5 (Readdy-Stanley)Let P be ad-dimensional polytope. The
flag h-vector of the polytopé obtains its maximum value only at the two
sets

S={1,3,5..yn{1,2,....d} and S=1{2,4,6,..1n{1,2,...,d}.



434 L.J. Billera, R. Ehrenborg

This follows since we know that each coefficient of ind-index of the
polytope is positive. For more details, see [25].

The results of this section were motivated in part bysthiemultiplicative
inequality for theg-polynomial,

9(P) = g(F) - g(P/F), (5-3)

originally conjectured by Kalai [20] and proved (for rational polytopes) by
Braden and MacPherson [12]. This inequality applies to a generalization of
the g-polynomial to alld-dimensional polytopes that comes from the study
of toric varieties and their intersection homology [28] and that reduces to
the simplicial g-polynomial in the simplicial case. Thepolynomial has
coefficients expressible in terms of the flfigzector [5, Theorem 6] (see
also [4] and [11§4] for various ways of computing this dependence). While

it carries only a fraction of the information in tkd-index, (5.3) seemsto say
something much deeper about the structure of polytopes than Theorem 5.1.
We note that (5.3) remains true when altered by taking a pyramid over either
F or P/F (since this does not change thgolynomial).

6 The upper bound theorem

Here we prove thed-version of the upper bound theorem for polytopes. It
will allow us to reach similar conclusions about the flagector (and the flag
f-vector). We begin by proving certain identities on Eulerian posets. In order
to do this, we introduce two linear maps on the algebradpolynomials.
Definea, 8 : Z{c,d) — Z{c,d) by defining them on a monomial
by
opy Ifw=c", By if w=c",
a(w) = { 0+ otherwise, and  B(w) = { 0 otherwise,
and extending the definitions by linearity. Observe that the linear enap
increases the degree bywhereas’ does not change the degree. Also note
for an interval[z, z] we havea(¥ ([, z])) = a,,.) andB(¥([x, 2])) =
By(z,2)—1- The two recursions (3.4) and (3.5) can now be written as

a(w-c)=pw) -d-a(w)-c, (6.1)
B(w-c) = flw) -~ 2 aw), (6.2)
for any cd-polynomialw.

Lemma 6.1 For anycd-polynomialw we have

> a(wa)) - wey =w — Bw).

w
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Proof. By linearity it is enough to prove this identity for ard-monomial
w. We do this by induction omw. The base case = 1 is straightforward.
Consider now the case when= v -c. ThenA(w) =2-v®@ 1+ vq)®
v(2) - €. Hence we have

2-a(v) + Za(v(l)) vy re=2-a(v)+(v-pB())-c

=v-c—[(v-c),
where the last step is by (6.2). For the other case v - d observe that
Aw)=v-c®1+v®c+3, v1) @ v - d. Thus we have

a(v . C) + a(v) -Cc+ Z a(v(l)) "U(2) - d

=av-c)+av)-c+ (v—70())-d
=v-d
=v-d-fv-d),
where the second step is by (6.1). Hence the induction is complete.
Now we can prove two essential identities.
Proposition 6.2 Let [z, z| be an interval in an Eulerian poset. Then

Z Ap(z,y) * W([y, Z]) = W([ZL‘, Z]) - ﬁp(x,z)—la

r<y<z

Z G(ap(x,y)) : Q([y’ Z]) = Qp(z,2) — Pyr(ﬂp(m,z)fl)'

r<y<z

Proof. To prove the first identity apply Lemma 6.1 to thd-polynomial
¥([z, 2]). Then the right-hand side of the lemmalig[x, z]) — B,z,.)—1-
The left-hand side evaluates}o, _, . @, ¥([y, z]) by Proposition 2.1
using the linear mag to bea and M to be the identity map.

To prove the second identity apply the operator Pyr to the first identity
and use the identity (2.1). We then obtain

Z (G(ap(z,y)) : W([y, Z]) + Cp(x,y) * Pyr(W([y, Z])))

r<<y<z
= Pyr(W([a;, Z])) - Pyr(ﬁp(m,z)fl)‘
Now subtract the second equation of Proposition 4.6 from this identity to
get

Z G(ap(x,y)) : W([ya Z]) = Pyr(l*p([x7 Z])) - Pyr(ﬁp(x,z)fl)

r<y<z
—Pyl’(@([(l}, Z])) + Cp(x,z) = Ap(z,2) — Pyr(/Bp(:r,z)—l)a
which is the desired equality.
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Proposition 6.3 Let P be a polytope and” a nontrivial face ofP. Let
F1, ..., F, be the facets oP that contain the facé’. Then we have that

Pyr@(9(FyU---UFE))) >¥((FyU---UE,)").

Proof. Let x be a face ofP such thatF' < z < P. By Corollary 4.5 we
have that

V(@)= D Py) - apy)-

F<y<x

Since the linear operat6f preserves weak inequalities and tiéfz, P]) >
0, we have

F<y<zx

Now sum over alll" < z < P.

Y G())-¥(z, P))

F<z<P
> > Y GY) - apyw) - U, P))
F<z<P F<y<z
= Z Z G(W(y) ’ O4p(y,:fc)) : W([x, P])
F<y<Py<ax<P
= D GUW) Y. e V(P
F<y<p y<z<P
+ 3 ) Y Glagym) ¥l Pl)
F<y<pP y<z<P
= Z G(WQ/)) ’ (W([y,P]) - ﬁp(y,P)—l)
F<y<P
+ Z U(y) - (O‘P(yap) - Pyr(ﬁp(y,P)—l)) )
F<y<P

where the last step is by Proposition 6.2. Move the negative terms to the
left-hand side and also cancel terms, we then obtain

Z (G (2)) - Bya,p)—1 + ¥ () - PY(By(a,p)-1))

F<z<P

> Z V() - apz,p)-

F<z<P

Now by the identity (2.1) we have
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Pyr( Z W(l') '/Bp(:p,P)l) > Z Lp(x) * Qp(z,P)-

F<z<P F<z<P
Lastly, apply Corollaries 3.2 and 4.4 and the proof is complete.
Proposition 6.4 Let P be a polytope with a vertex Let(Q be the convex

hull of P with a new vertexv placed beyond all facets @ containingv
and beneath the rest. Then

v (P) <¥(Q).

Proof. LetF1, ..., I, befacets of that containthe vertexand let, . . .,
G be the facets of) that containe. Then we have thal(F, U---U F,) =
J(G1U- - -UG) (see [18§5.2]). Moreover, the pyramid @f(G, U- - - UG)
is(GLU---UGy).

Observe that the polytopd? and (@ share the remaining facets. Lét
be the union of these remaining facets. Now we have that

U(P)=¥(FLU---UF))+¥A) PO U---UFE))-c
<Pyrw(O(FLU---UF))+¥(A)—w(@(FLU---UF,)) ¢
=T((GLU--- UG )+ TN —=w(D(GLU---UGy)) - ¢
=v(Q),

where the inequality is Proposition 6.3 and the first and last step is
Lemma 3.3.
Theorem 6.5 Let P be ad-dimensional polytope with vertices. Then

¥ (P) <¥(C(n,d)),
whereC'(n, d) is the cyclic polytope i@ dimensions and with vertices.
Proof. We can pull each of the vertices of the polytapeintil we obtain a
simplicial polytope? with the same number of vertices. By Proposition 6.4
we have that/(P) < ¥(Q). Among simplicial polytopes McMullen [22,

23] proved that the cyclic polytope maximizes theector. Since thed-
polynomials®, ; are nonnegative, it follows that(Q)) < ¥(C(n,d)).

Since the flagi-vector is a nonnegative linear combination of the coeffi-
cients of thecd-index, and the flag-vector a nonnegative linear combina-
tion of the flagh-vector, we obtain as a corollary two inequalities. The first
of these was observed in [37]; the second is new.

Corollary 6.6 Let P be ad-dimensional polytope with vertices. ForS C
{1,2,...,d},

fs(P) < fs(C(n,d)) and hg(P) < hs(C(n,d)).
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7 Derived inequalities

The strong submultiplicative inequalities for thd-index given in Theo-
rem 5.1 give rise to quadratic inequalities for the ffagector. These arise
by means of the convolution product on chain counts introduced in [20] and
studied extensively in [11]. We compute the resulting derived inequalities
for 4-dimensional polytopes.

First we determine the coefficients of tbé-index in terms of the flag-
vector. To do this, we recall a related invariant, the spargector, defined
in [9]. It was shown in [2] that a basis for the flggvectors of Eulerian
posets of rankl + 1 is given by thesparsesubsetss C {1,...,d}, namely
thoseS not containing{i, i + 1}, for all ¢, and not containing. We define
the sparse flagk-vector, for sparse subsefs, by

kg = Z(_l)ISHTl hr
TCS
or, equivalently,

ks =Y (=2)17171 . (7.1)

TCS

It is immediate that the spardevector also gives a basis for the flgg
vectors. This can be seen as well from the following unpublished result (due
to the authors and Margaret Readdy), which can be proved by substituting
the expression fokg given in [9, Definition 6.5] into the expression below.

Proposition 7.1 Letw = c™*dc™dc™ - - - c"»dc"r+! be acd-word, and
definemy, ..., my, bymg = 1andm; = m;_; +n;+2. Then the coefficient
of w in thecd-index is given by

Z (_1)(ml—i1)+(m2—i2)+'“+(mp—ip) k

TR

1119 1p

where the sum is over afituples(iy, is, . .., 4,) such thatm;_; < i; <
m; — 2.

To obtain these coefficients in terms of tfig one can invert the equa-

tion (7.1) to obtain
fg = Z 2lSI=IT1 oo
TCS

A different expression for thed-coefficients in terms of the flaly-vector

is given in [4]. Thecd-coefficients were computed directly through dimen-
sion 8 (rank 9) by Meisinger [21, Appendix D]. The nonnegativity of the
coefficients of thecd-index for polytopes implies that the forms given in
Proposition 7.1 are always honnegative for polytopes. In fact, applying (5.1)
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when F' is a facet ofP shows that these forms are always increasing with
respect to inclusion of faces. Since eagtis itself a sum otd-coefficients
(see [9, pp. 34-35)), it follows as well that > 0 for polytopes.

We can use the inequalities in Theorem 5.1 to obtain quadratic inequal-
ities on the flagf-vector by making implicit use of a convolution on flag
f-vectors studied in [11,20]. Suppogg and f;* count flags in posets of
ranksm andn, respectively. Then i’ is a poset of rank + m, it follows
that

Z fs ([0, 2]) - 7' ([, 1) = f&5 tmyocrony P (7.2)

z:p(z

whereT +n := {i +n | i € T}. Thus if we sum an inequality like (5.1)
or (5.2) over all faced” of a fixed dimensiork, we get on the right-hand
side acd-polynomial with coefficients in terms of the flgyvector of P
(only involving flags containing), while on the left-hand side we have the
polynomialfy (P)-¥(P), whose coefficients are products of linear forms in
the flag f-vector with f;(P). We note that the convolution defined in (7.2)
is dual to the coalgebra structure @Kc, d) (see [11, Sect. 5.1]).

We illustrate by deriving all such inequalities that can be obtained for
4-dimensional polytopes. There are four cases to check, where the rank of
is 1,2, 3 or4 and the pyramid is performed dn The other four cases will
follow by duality. It follows from Proposition 7.1 that for posets of ranks
between 1 and 5 thed-indices ardl, ¢, c? + (1 — 2)d, ¢ + (f1 — 2)dc +
(f2 = fi)ed andc* + (fi — 2)de® + (fo — fi)ede + (f3 — fo + f1 —
2)c2d + (f13 — 2f3 — 2f1 + 4)d?, respectively.

The table below summarizes the nontrivial inequalities coming from
this approach. We have omitted those cases when the derived inequality is
merely the nonnegativity of the relevatd-coefficient. All inequalities are
expressed in terms of the basis of sparse flag numbers, f; and fis.

p(F) ed—word derived inequality
1 cid fis+ fife +2f1 < fifs + ()7 +2f2
2 cZd fis+ (F2)° < fifo + f2fs
dc? 3<fi
d’ 2f2(fi+ f3) < fis(fa—1)+6f2
3 dc? fis+ fa < fifs
cdc fis+ fifs < fa(fa+1)
4 dc? fis+ fife+3fi+ f3 < fifs + (f1)° +3f2

cde  fis+ fifs+(fi—fo)  + o< fofs+ fi+f3
cd  (f1+ f3)(2f2 +3)
S(A+HR)P+HR)P+H2f+ f
d? fia(fe+ 1) +2(fr + f2)? + 62
< (fizs+2f2+6)(f1 + fa)
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For completeness, we give below the inequalities derived in a similar
way (for rational polytopes) from the Braden-MacPherson inequality (5.3).
Here the relevang-polynomials ard, 1, 1 + (f; — 3)t, 1 + (f1 — 4)t and
1+ (fi = 5)t+ (10 — 4f1 + fo — 3f3 + f13)t? (see [21, Appendix B]
or [4]). For these ranks, all the nontrivial inequalities come from comparing
the degree one terms. Again, we omit those obtainable by duality.

p(F) derived inequality
1 22+ f1 < (f1)?
2 fis+2fa < fifo
3 fis+2fs < fifs

4 fis+ fife+3fi+f3 < fifs+ (f1)> +3f2
Note that the first of these is straightforward; in fact, it follows from
a stronger inequality in [1, Theorem 2]. The fourth of these is exactly the
coefficient ofdc? whenp(F') = 4 in the first table.
It is interesting, and somewhat provocative, to note thatffeectors
of simplicial polytopes, the first nonlinear inequality of the characterizing

set,go < gi”, is also quadratic. One can obtain further inequalities using
this method by breaking into more than two intervals and applying Theo-

rem 5.1 or the Braden-MacPherson inequality successively. These will still
be quadratic, withfs(P) - ¥ (P) on the left-hand side and a polynomial with
linear coefficients on the right-hand side. It is not clear whether or not the
inequalities so obtained are consequences of the quadratics described above.
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