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Abstract. We prove that thecd-index of a convex polytope satisfies a strong
monotonicity property with respect to thecd-indices of any face and its
link. As a consequence, we prove ford-dimensional polytopes a conjecture
of Stanley that thecd-index is minimized on thed-dimensional simplex.
Moreover, we prove the upper bound theorem for thecd-index, namely that
thecd-index of anyd-dimensional polytope withn vertices is at most that
of C(n, d), thed-dimensional cyclic polytope withn vertices.

1 Introduction

The problem of determining the relations between the numbers of faces of
all dimensions in convex polytopes is one that has amused mathematicians
for hundreds of years. For the case of 3-dimensional polytopes, this problem
was settled more than 90 years ago by Steinitz [31]. Nearly 20 years ago, the
problem was completely settled in arbitrary dimension for the mutually dual
cases of simplicial and simple polytopes – those with vertices, respectively,
facets, in general position [10,26]. Yet in spite of some progress, and no lack
of effort, the general solution remains elusive. See [7] for a brief survey and
references to some of the more recent work in this area. In particular, [1] and
[6] describe the current incomplete state of knowledge about inequalities for
face numbers of4-dimensional polytopes.

The form of the solution in the simplicial case is of interest here. Rather
than working directly with the numbers of faces of each dimension (the
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f -vector), two linearly equivalent derived invariants are considered, theh-
polynomial and theg-polynomial. These were introduced in this context
by McMullen [22], who showed by means of a shelling argument that the
h-polynomial of a simplicial polytope always has nonnegative coefficients
and it is maximized, over all simpliciald-dimensional polytopes withn
vertices, by the cyclic polytopeC(n, d) (the convex hull ofn points on
the moment curve(t, t2, . . . , td)). The latter is known as theUpper Bound
Theoremfor polytopes, since it implies that forall d-dimensional polytopes
with n verticesC(n, d) maximizes the number of faces of all dimensions.
One key part of the characterization off -vectors in the simplicial case is
the so-calledGeneralized Lower Bound Theorem, which states that over all
convexd-dimensional polytopes, theg-polynomial is minimized termwise
on thed-dimensional simplex. This fact gives all the linear inequalities that
hold forf -vectors of simplicial polytopes.

For the case of generald-dimensional polytopes, there has been some
effort to understand more than just thef -vector. Theflagf -vectoris an in-
variant that includes the full enumerative information about chains of faces
in the polytope, and so includes the usualf -vector, reducing to the latter
in the case of simple or simplicial polytopes. In [2] all the linear relations
holding for flagf -vectors of polytopes (or, more generally, Eulerian par-
tially ordered sets) are obtained via the Euler relations holding for intervals
of faces. Thecd-index is a derived invariant that efficiently encodes infor-
mation carried by the flagf -vector [5].

By means of a shelling argument, Stanley [29] showed that thecd-index
is termwise nonnegative for a class of objects somewhat more general than
convex polytopes. Since the coefficients of thecd-index of the simplex are
all positive, this does not establish that thecd-index is minimized over poly-
topes by the simplices. However, he conjectured more generally that among
all Gorenstein∗ lattices the Boolean algebra has the termwise smallestcd-
index [30, Conjecture 2.7]. The zonotopal analogue of Stanley’s conjecture
was proved by the authors and Readdy [8], namely, among all zonotopes (or
more generally all oriented matroids) the cube has the smallestcd-index.
Other inequalities giving evidence of this conjecture were given by Ehren-
borg and Fox [14].

By extending the methods of Stanley and McMullen, we show here that
the cd-index of any convexd-dimensional polytope is termwise as large
as that of thed-dimensional simplex, establishing Stanley’s conjecture for
polytopes. Further, we show the corresponding upper bound theorem for
thecd-index: over alld-dimensional polytopes withn vertices, the cyclic
polytopeC(n, d) has the termwise largestcd-index. Our methods actually
produce much stronger lower bounds. We show that thecd-index satisfies a
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strong version of the submultiplicative property of theg-polynomial proved
recently by Braden and MacPherson [12].

In Sect. 2, we give the basic definitions concerning polytopes, Eulerian
posets and thecd-index. This includes a brief introduction to the coalgebra
notions that come into play in proving the upper bound theorem. Section 3
contains some identities involving thecd-index of the boundary of a regular
cellular ball and of the regular cellular sphere obtained by attaching two such
balls along their common boundary. We compute thecd-index of partial
shellings in Sect. 4 and use this in Sect. 5 to prove the submultiplicative
inequalities. Section 6 is dedicated to the proof of the upper bound theorem.
Finally, some consequences of these results for inequalities on the flagf -
vector are considered in Sect. 7.

2 Polytopes, Eulerian posets and thecd-index

A partially ordered set(poset)P is graded if it has a minimal element0̂,
maximal element̂1, and for every elementx in the poset, every maximal
chain from0̂ to x has the same length. Let the rank of an elementx, ρ(x),
be the length of a maximal chain from̂0 to x. We callρ(P ) = ρ(0̂, 1̂) the
rank of the posetP . Forx ≤ y defineρ(x, y) to be equal toρ(y)−ρ(x) and
define theinterval from x to y to be set{z : x ≤ z ≤ y}, denoted[x, y].
Observe that[x, y] is a graded poset of rankρ(x, y).

For a graded posetP of rankd+1 the flagf -vector is defined as follows.
For S a subset of{1, 2, . . . , d} let fS be the number of chains ofP whose
ranks are exactly given by the setS. That is,

fS = |{0̂ = x0 < x1 < · · · < xk+1 = 1̂ : ρ(xi) = si}|,
whereS = {s1 < · · · < sk}. A stepping stone in the study of flag vectors
is the flagh-vector. It is given by the invertible relation (and corresponding
inverse relation):

hS =
∑
T⊆S

(−1)|S−T | fT and fS =
∑
T⊆S

hT .

Hence the flagf -vector and the flagh-vector carry the same information
about the poset.

Letaandbbe two non-commuting variables. For a subsetS of {1, 2, . . . ,
d}, defineuS to be theab-monomialu1 · · ·ud whereui = a if i 6∈ S and
ui = b if i ∈ S. Theab-indexof a posetP of rankd + 1, Ψ(P ), is defined
by

Ψ(P ) =
∑
S

hS · uS ,
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where the sum ranges over all subsetsS of {1, 2, . . . , d}. Observe theab-
index encodes exactly the same information as the flagh-vector. Moreover
Ψ(P ) is a homogeneous polynomial of degreed.

Another way to view theab-index is by assigning a weight to each chain
in the posetP . For a chainc = {0̂ = x0 < x1 < · · · < xk+1 = 1̂} let the
weightof the chainc be the productwt(c) = w1 · · ·wd, where

wi =
{

b if i ∈ {ρ(x1), . . . , ρ(xk)},
a − b otherwise.

Then theab-index is given by the sum

Ψ(P ) =
∑

c

wt(c),

wherec ranges over all chains in the posetP .
TheMöbius functionµ(x, y) is defined forx, y ∈ P by µ(x, x) = 1 and

for x < y in P by
∑

x≤z≤y µ(x, z) = 0. A posetP is calledEulerianif the

Möbius function satisfiesµ(x, y) = (−1)ρ(x,y). There are linear relations
among the entries of the flagf -vector of an Eulerian poset, called thegen-
eralized Dehn-Sommerville relations, discovered by Bayer and Billera [2].
Fine observed and Bayer and Klapper [5] proved that whenP is Eulerian
theab-index ofP can be written in terms of the non-commuting variables
c = a + b andd = a · b + b · a. The resulting polynomial is called the
cd-index. In fact, they showed that thecd-index exists for a poset if and only
if the flagf -vector of the poset satisfies the generalized Dehn-Sommerville
relations. Stanley gave another elementary proof of the existence of the
cd-index in [29]; see also the discussion in Sect. 3.

Let Z〈c,d〉 be the ring of polynomials in the variablesc andd, and
let the degree ofc be 1 and the degree ofd be 2. For a posetP , let P ∗
denote thedual poset. The posetP ∗ has the same underlying set asP but
with the order relationx ≤P ∗ y if x ≥P y. Similarly, for acd-monomial
v = v1v2 · · · vn, let v∗ = vn · · · v2v1. By linearity we extend this operation
to be an involution onZ〈c,d〉. Observe for an Eulerian posetP we have
Ψ(P ∗) = Ψ(P )∗.

For twocd-polynomialsv andw, we definev ≤ w if thecd-polynomial
w−v has nonnegative coefficients. Observe that comparingcd-polynomials
coefficientwise is stronger than comparingab-polynomials since a polyno-
mial can have nonnegative coefficients as anab-polynomial but not as a
cd-polynomial (for example,a2 + b2 = c2 − d).

An important tool in studying thecd-index is that thecd-index is a coal-
gebra homomorphism. We give a short explanation here; for basic notions
of coalgebras, see [24,32]. For more information on the coalgebra discussed
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here, we refer the reader to [17]. We extend the ringZ〈c,d〉 to a coalge-
bra; that is, we enrich the ring with a coproduct∆, which is a linear map
∆ : Z〈c,d〉 −→ Z〈c,d〉 ⊗ Z〈c,d〉. We will use the Sweedler notation for
the coproduct; hence for the element∆(w) we write

∑
w w(1)⊗w(2). We de-

fine our coproduct∆ by∆(c) = 2·1⊗1,∆(d) = c⊗1+1⊗c, and otherwise
by the Newtonian condition∆(u·v) =

∑
u u(1)⊗u(2) ·v+

∑
v u·v(1)⊗v(2).

Observe thatZ〈c,d〉 is a coalgebra without a counit.
Let the vector spaceE be spanned by all isomorphism types of Eu-

lerian posets of rank greater than or equal to one. Observe thatΨ ex-
tends to a linear map fromE to Z〈c,d〉. Define a coproduct onE by
∆(P ) =

∑
0̂<x<1̂[0̂, x] ⊗ [x, 1̂] for an Eulerian posetP and extend by lin-

earity to the spaceE . Ehrenborg and Readdy [17] proved that thecd-index
Ψ is a coalgebra homomorphism from the coalgebra of Eulerian posetsE
to the coalgebraZ〈c,d〉. We will use this result in the following form. Its
importance is that convolution of two linear maps over an interval[x, z] can
be computed by only knowing thecd-index Ψ([x, z]) and not the whole
poset structure of the interval.

Proposition 2.1 LetL andM be linear maps fromZ〈c,d〉 into a ring. Then
the convolution ofL and M on the interval[x, z] of an Eulerian poset is
given by∑

x<y<z

L(Ψ([x, y])) · M(Ψ([y, z])) =
∑
w

L(w(1)) · M(w(2)),

wherew is thecd-polynomialΨ([x, z]).

The face lattice of ad-dimensional convex polytope is an Eulerian poset
of rank d + 1, hence ad-dimensional convex polytope has acd-index of
degreed associated to it. Note that ifP is a polytope andH ⊂ F are faces
of P , then the interval[H, F ] in the face lattice ofP is the face lattice of
a convex polytope, denotedF/H. In particular[∅, F ] is the face lattice of
the faceF . Thus, for a polytopeP we will write Ψ(P ) for Ψ([∅, P ]) and,
more generally,Ψ(F/H) for Ψ([H, F ]). Also recall that the face lattice of
the polarP ∗ of a polytopeP is the dual of the face lattice ofP .

The coalgebra techniques in [17] were used to show how thecd-index
of convex polytopes changes under certain geometric operations. One of
them is essential to us. On the ringZ〈c,d〉 define a derivationG by letting
G(c) = d andG(d) = cd. Also define a linear operator Pyr on the ring
Z〈c,d〉 by

Pyr(w) = w · c + G(w).
It is straightforward to check that

Pyr(u · v) = G(u) · v + u · Pyr(v). (2.1)

It is proved in [17] that:
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Theorem 2.2 (Ehrenborg-Readdy)For a polytopeP let Pyr(P ) denote
the pyramidover P , that is, the convex hull of a pointv not in the affine
span ofP with the polytopeP . Then thecd-index ofPyr(P ) is given by

Ψ(Pyr(P )) = Pyr(Ψ(P )).

Since the pyramid operation commutes with polarity, we have that for a
cd-polynomialw that Pyr(w)∗ = Pyr(w∗).

A polytope is said to besimplicial if every facet is a simplex. The flagf -
vector for simplicial polytopes depends only on thef -vector or, equivalently,
theh-vector (see, for example, [3,§7]). Stanley [29] gave thecd-index of
simplicial polytopes in terms of theh-vector:

Ψ(P ) =
d∑

i=0

hi · Φ̌d,i,

where theΦ̌d,i arecd-polynomials. The polynomialšΦd,i satisfy the fol-
lowing recursion

Φ̌d+1,i+1 = G(Φ̌d,i), (2.2)

with the boundary conditions:

Φ̌0,0 = 1 and Φ̌d+1,0 =
d∑

i=0

Φ̌d,i · c.

Hence we have thaťΦd,i are nonnegativecd-polynomials. The recursion
(2.2) is due to Ehrenborg and Readdy [17]. There are many other recursions
for Φ̌d,i; see [15], or [19], where there is also a combinatorial interpretation
for these polynomials.

3 The boundary of a cellular ball

Let P be a graded poset and letx < z be two elements inP . Using the
chain definition for theab-index and conditioning on the largest element in
a chain, one obtains that theab-index of the interval[x, z] is given by

Ψ([x, z]) = (a − b)ρ(x,z)−1 +
∑

x<y<z

Ψ([x, y]) · b · (a − b)ρ(y,z)−1. (3.1)

By multiplying on the right witha − b and bringing the termΨ([x, z]) · b
to the right-hand side one obtains

Ψ([x, z]) · a = (a − b)ρ(x,z) +
∑

x<y≤z

Ψ([x, y]) · b · (a − b)ρ(y,z). (3.2)
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Define three functionsf , g andh in the incidence algebra ofP by

f(x, y) =
{

Ψ([x, y]) · a if x < y,
1 if x = y,

g(x, y) =
{

Ψ([x, y]) · b if x < y,
1 if x = y,

andh(x, y) = (a − b)ρ(x,y). Then (3.2) can be written asf = g · h where
the product is the convolution of the incidence algebra. Observe thath
is invertible and its inverseh−1 is given byh−1(x, y) = µ(x, y) · (a −
b)ρ(x,y), whereµ(x, y) denotes the M̈obius function of the interval[x, y].
By expanding the equivalent relationg = f · h−1 we obtain

Ψ([x, z]) · b = µ(x, z) · (a − b)ρ(x,z)

+
∑

x<y≤z

Ψ([x, y]) · a · µ(y, z) · (a − b)ρ(y,z).

By moving the termΨ [(x, z)] · a to the left-hand side of the equation and
cancelling a factor ofb − a on the right we have:

Ψ([x, z]) = −µ(x, z) · (a − b)ρ(x,z)−1

−
∑

x<y<z

Ψ([x, y]) · a · µ(y, z) · (a − b)ρ(y,z)−1. (3.3)

Equation (3.3) is an alternative recursion for theab-index, which may be
viewed as dual to (3.1). We remark that the trick of dividing with the factor
of b − a is essentially due to Ǵabor Hetyei (unpublished). We obtain the
existence of thecd-index for an Eulerian poset by adding equations (3.1)
and (3.3), using thatµ(y, z) = (−1)ρ(y,z), and recognizing the terms as
cd-polynomials. This discussion is the essential step in Stanley’s proof of
the existence of thecd-index; see the proof of Theorem 1.1 in [29].

We definecd-polynomialsαn and βn for n ≥ 0 by α0 = −1 and
otherwise by

α2k = −1
2

[
(c2 − 2d)k + c · (c2 − 2d)k−1 · c

]
,

α2k+1 =
1
2

[
(c2 − 2d)k · c + c · (c2 − 2d)k

]
,

β2k = (c2 − 2d)k and β2k+1 = −c · (c2 − 2d)k.

The reverses of thecd-polynomialsβn, namelyβ∗
n, were used in [16] to see

how thecd-index of a polytope changes when cutting off a face, while their
negatives were used in the existence proof in [29]. Asab-polynomials we
have the identity forβn:

βn · (a − b) = ((−1)n · a − b) · (a − b)n.
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Together theαn andβn satisfy the recurrences

αn = βn−2 · d − αn−1 · c for n ≥ 2, (3.4)

βn = βn−1 · c − 2 · αn for n ≥ 1. (3.5)

The first recurrence shows that theαn also have integer coefficients. Let us
also mention that theαn also satisfy the following recurrence

αn+1 = G(αn) − c · αn,

even though we will not use it.
Let Γ be a finite regular cell (or CW) complex, for instance a polyhedral

complex, such that its underlying space|Γ | is a topological ball of arbitrary
dimension. (We shall call such a complex aregular cellular ball from now
on.) LetP = P (Γ ) be the poset of nonempty cells ofΓ , whereτ ≤ σ if
τ ⊆ σ, andP̂ be the posetP with minimum and maximum elements0̂ and
1̂ adjoined. It follows directly from Proposition 3.8.9 of [27] that

µP̂ (y, 1̂) =
{

(−1)ρ(y,1̂) if y ∈ int(Γ ),
0 otherwise.

(3.6)

We now can give an expression for theab-index of the boundary ofΓ in
terms of thecd-indices of cells in the interior.

Proposition 3.1 LetΓ be a regular cellular ball. Then

Ψ(∂Γ ) =
∑

F∈int(Γ )

Ψ(F ) · βρ(F,1̂)−1.

Proof. Let P = P (Γ ) and P̂ be as above. Equating the expressions for
Ψ(P̂ ) = Ψ([0̂, 1̂]) given by (3.1) and (3.3), and using (3.6), we get

(a − b)ρ(P̂ )−1 +
∑

0̂<F<1̂

Ψ(F ) · b · (a − b)ρ(F,1̂)−1

= −
∑

F∈int(Γ )

Ψ(F ) · (−1)ρ(F,1̂) · a · (a − b)ρ(F,1̂)−1.

Moving all the interior terms to the right-hand side we obtain

(a − b)ρ(P̂ )−1 +
∑

F∈∂Γ

Ψ(F ) · b · (a − b)ρ(F,1̂)−1

=
∑

F∈int(Γ )

Ψ(F ) ·
(
(−1)ρ(F,1̂)−1 · a − b

)
· (a − b)ρ(F,1̂)−1

=
∑

F∈int(Γ )

Ψ(F ) · βρ(F,1̂)−1 · (a − b).
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Considering the face poset of∂Γ and the expression of itscd-index by (3.1),
we see that the left-hand side of the last equation is equal toΨ(∂Γ ) ·(a−b),
since the face poset of∂Γ has rank one less than that ofΓ . By cancelling a
factor ofa − b on both sides of the last equation, the result follows.

Corollary 3.2 Let P be a polytope andF a nontrivial face ofP . Let
F1, . . . , Fr be all the facets of the polytopeP that contains the faceF .
Then

Ψ(∂(F1 ∪ · · · ∪ Fr)) =
∑

F≤x<P

Ψ(x) · βρ(x,P )−1.

Proof. Observe that, by Lemma 2 and Proposition 2 of [13],F1 ∪ · · · ∪ Fr

is a regular cellular ball whose interior faces are exactly those faces of the
polytopeP which contain the faceF .

If Γ is a regular cellulard-dimensional ball, then denote byΓ ′ the regular
cell complex obtained fromΓ by attaching a single newd-dimensional cell
τ along∂Γ , that is, such that∂Γ = ∂τ . Note that|Γ ′| is ad-dimensional
sphere. The proof of Lemma 6.3 in [17] also proves the following.

Lemma 3.3 LetΓ andΛ be regular cellulard-dimensional balls such that
∂Γ = ∂Λ = Γ ∩ Λ. Then

Ψ(Γ ∪ Λ) = Ψ(Γ ′) + Ψ(Λ′) − Ψ(Γ ∩ Λ) · c.

4 Shelling

We discuss in this section the effect of shelling on thecd-index of a poly-
tope. Stanley [29] makes use of a property of Eulerian regular cellular com-
plexes (for example, of regular cellular subdivisions of a sphere) called
S-shellability. He observed that for polytopes that the “line shellings” of
Bruggesser and Mani [13] are alwaysS-shellings as well as shellings in the
classical sense (C-shellings). (For simplicial complexes as well as cubical
complexes,S-shellability andC-shellability are equivalent; for a proof of
the latter, see [15].)

Although we will prove some of our results in the generality of regu-
lar cellular complexes, our crucial shelling arguments will be restricted to
polytopes, and in this case shellings will always refer to line shellings. In
particular, we need that for every pair of facesG ⊂ F , there exist a (line)
shelling ofF such that all the facets ofF containingG appear as an initial
segment.

We state first a corollary to the proof of [29, Theorem 2.2] that will be
useful in what follows. To keep the exposition simpler, we refer the interested
reader to [29] for the definition ofS-shelling.
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Proposition 4.1 (Stanley)Let F1, . . . , Fn be anS-shelling of a regular
cellular sphereΩ. Then

0 ≤ Ψ(F ′
1) ≤ Ψ((F1 ∪ F2)′) ≤ · · · ≤ Ψ((F1 ∪ · · · ∪ Fn−1)′) = Ψ(Ω).

MoreoverΨ(F ′
1) = Ψ(F1) · c.

For a d-dimensional regular cellular sphereΩ, the coefficient of the
termcd−2d is the number of facets minus two. Hence we observe that each
inequality in Proposition 4.1 is not an equality.

Lemma 4.2 LetF1, . . . , Fn be a line shelling of a polytopeP . For 2 ≤ r ≤
n − 1 andΛ = (F1 ∪ · · · ∪ Fr−1) ∩ Fr we have

Ψ((F1 ∪ · · · ∪ Fr)′) − Ψ((F1 ∪ · · · ∪ Fr−1)′) = Ψ(Fr) · c − Ψ(Λ′) · c
+Ψ(∂Λ) · d.

Proof. Since line shellings are reversible, bothΛ andΓ = (Fr+1 ∪ · · · ∪
Fn)∩Fr are regular cellulard-dimensional balls. Further∂Fr = Λ∪Γ and
∂Γ = ∂Λ = Γ ∩ Λ. Thus by Lemma 3.3,

Ψ(Fr) − Ψ(Λ′) = Ψ(Γ ′) − Ψ(∂Γ ) · c. (4.1)

Let Ψ̆ := Ψ((F1 ∪· · ·∪Fr)′)−Ψ((F1 ∪· · ·∪Fr−1)′). By [29, Lemma 2.1],

Ψ̆ =
(
Ψ(Γ ′) − Ψ(∂Γ ) · c) · c + Ψ(∂Γ ) · d. (4.2)

Substitution of (4.1) into (4.2) completes the proof.

Proposition 4.3 LetF1, . . . , Fn be a line shelling of a polytopeP . Then for
1 ≤ r ≤ n − 1 we have

Ψ((F1 ∪ · · · ∪ Fr)′) =
∑
F

Ψ(F ) · αρ(F,P )

where the sum is over all nonempty intersections ofF1, . . . , Fr.

Proof. We proceed by induction onr. The caser = 1, that Ψ(F ′
1) =

Ψ(F1) · c, is included in Proposition 4.1. For the inductive step, we have by
Lemma 4.2, Proposition 3.1 and the inductive hypothesis that

Ψ((F1 ∪ · · · ∪ Fr)′) = Ψ((F1 ∪ · · · ∪ Fr−1)′) + Ψ(Fr) · c
−Ψ(Λ′) · c + Ψ(∂Λ) · d

=
∑
F

Ψ(F ) · αρ(F,P ) + Ψ(Fr) · α1

+
∑
F

Ψ(F ) · (−αρ(F,P )−1 · c + βρ(F,P )−2 · d)
,
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where the first sum on the right is over all nonempty intersections ofF1, . . . ,
Fr−1, and the second is over all nonempty intersections ofF1, . . . , Fr lying
in Fr. The proof is completed by use of the recurrence (3.4).

Similar to Corollary 3.2 we have

Corollary 4.4 Let P be a polytope andF a nontrivial face ofP . Let
F1, . . . , Fr be all the facets of the polytopeP that contain the faceF .
Then

Ψ((F1 ∪ · · · ∪ Fr)′) =
∑

F≤x<P

Ψ(x) · αρ(x,P ).

Proof. We may reorder the facetsF1, . . . , Fr such that they form the initial
segment of a line shelling of the polytopeP . Then the facesx containing
F are precisely intersections of the facets containingF . Now the equality
follows from Proposition 4.3.

Corollary 4.5 LetP be a polytope andF a nonempty face ofP . Then

Ψ(P ) ≥
∑

F≤x<P

Ψ(x) · αρ(x,P ).

Proof. The case when the faceF is the polytopeP follows from the non-
negativity of thecd-index for polytopes. Hence consider the case when the
faceF is a nontrivial face. LetF1, . . . , Fr be all the facets of the polytope
P that contain the faceF . Then by Proposition 4.1 we have the inequality

Ψ(P ) ≥ Ψ((F1 ∪ · · · ∪ Fr)′).

Now the result follows from Corollary 4.4.

Proposition 4.6 Let [x, z] be an interval in an Eulerian poset. Then

Pyr(Ψ([x, z])) − αρ(x,z) =
∑

x<y<z

Pyr(Ψ([x, y])) · αρ(y,z)

=
∑

x<y<z

αρ(x,y) · Pyr(Ψ([y, z])).

Proof. We prove the first identity in the case in which the interval[x, z] is
the face lattice of a polytopeP . Let Q be the pyramid overP with apex
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v, and letF1, . . . , Fr be a partial shelling ofQ consisting of all the faces
containingv. Then by Corollary 4.4,

Ψ(Q) = Ψ((F1 ∪ · · · ∪ Fr)′)

=
∑

v≤G<Q

Ψ(G) · αρ(G,Q)

= αρ(P ) +
∑

∅<F<P

Pyr(Ψ(F )) · αρ(F,P ),

since every faceG of Q containingv is a pyramid over a face ofP .
The general case now follows since the flagf -vectors of polytopes lin-

early span the flagf -vectors of all Eulerian posets [2,9]. The second identity
follows by duality andα∗

n = αn.

5 The main theorem

We can now prove the main result of this paper which leads to a proof of
the conjecture of Stanley for polytopes.

Theorem 5.1 For polytopeP and nontrivial faceF of P ,

Ψ(P ) ≥ Ψ(F ) · Pyr(Ψ(P/F )), (5.1)

Ψ(P ) ≥ Pyr(Ψ(F )) · Ψ(P/F ). (5.2)

Proof. It is only necessary to prove the first inequality; the second will
follow by duality. Letx be a face ofP such thatF < x < P . By applying
Corollary 4.5 to the polytopex, we have that

Ψ(x) ≥
∑

F≤y<x

Ψ(y) · αρ(y,x).

SinceΨ([x, P ]) ≥ 0 we have that Pyr(Ψ([x, P ])) ≥ 0. Thus

Ψ(x) · Pyr(Ψ([x, P ])) ≥
∑

F≤y<x

Ψ(y) · αρ(y,x) · Pyr(Ψ([x, P ])).

Now sum over allF < x < P .∑
F<x<P

Ψ(x) · Pyr(Ψ([x, P ]))

≥
∑

F<x<P

∑
F≤y<x

Ψ(y) · αρ(y,x) · Pyr(Ψ([x, P ]))

=
∑

F≤y<P

Ψ(y) ·
∑

y<x<P

αρ(y,x) · Pyr(Ψ([x, P ]))

=
∑

F≤y<P

Ψ(y) · (
Pyr(Ψ([y, P ])) − αρ(y,P )

)
,
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where the last step is by Proposition 4.6. Now by cancelling terms we obtain∑
F≤x<P

Ψ(x) · αρ(x,P ) ≥ Ψ(F ) · Pyr(Ψ([F, P ])).

Apply now Corollary 4.5 and we have the desired result.

The following is Conjecture 11.1 of [17].

Corollary 5.2 For any polytopeP and facetF of P ,

Ψ(P ) ≥ Pyr(Ψ(F )),

and so among polytopes havingF as a facet,Pyr(F ) has the smallestcd-
index.

Proof. This follows from the second inequality in Theorem 5.1 since
Ψ(P/F ) = 1.

Using repeated applications of Corollary 5.2 and the fact the Pyr(·) is a
nonnegative operator onZ〈c,d〉, we have proved the conjecture of Stanley
[30, Conjecture 2.7] in the case of polytopes.

Theorem 5.3 For ad-dimensional polytopeP , Ψ(P ) ≥ Ψ(∆d), that is, the
cd-index ford-dimensional polytopes is minimized on thed-dimensional
simplex.

We also remark that equality in Theorem 5.1 only happens when the
polytopeP is a pyramid over another polytopeQ. In equation (5.1) this
occurs when the faceF is the apex vertex, while in equation (5.2) whenF
is the base polytopeQ.

Sincew · c ≤ Pyr(w) for a nonnegativecd-polynomialw, we conclude
the following.

Corollary 5.4 For any polytopeP and nontrivial faceF ofP , thecd-index
Ψ(P ) is larger than each of thecd-polynomials

c · Ψ(F ) · Ψ(P/F ), Ψ(F ) · c · Ψ(P/F ) and Ψ(F ) · Ψ(P/F ) · c.
The following corollary was pointed out to us by Margaret Readdy.

Corollary 5.5 (Readdy-Stanley)Let P be ad-dimensional polytope. The
flag h-vector of the polytopeP obtains its maximum value only at the two
sets

S = {1, 3, 5, . . .}∩{1, 2, . . . , d} and S = {2, 4, 6, . . .}∩{1, 2, . . . , d}.
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This follows since we know that each coefficient of thecd-index of the
polytope is positive. For more details, see [25].

The results of this section were motivated in part by thesubmultiplicative
inequality for theg-polynomial,

g(P ) ≥ g(F ) · g(P/F ), (5.3)

originally conjectured by Kalai [20] and proved (for rational polytopes) by
Braden and MacPherson [12]. This inequality applies to a generalization of
theg-polynomial to alld-dimensional polytopes that comes from the study
of toric varieties and their intersection homology [28] and that reduces to
the simplicialg-polynomial in the simplicial case. Theg-polynomial has
coefficients expressible in terms of the flagf -vector [5, Theorem 6] (see
also [4] and [11,§4] for various ways of computing this dependence). While
it carries only a fraction of the information in thecd-index, (5.3) seems to say
something much deeper about the structure of polytopes than Theorem 5.1.
We note that (5.3) remains true when altered by taking a pyramid over either
F or P/F (since this does not change theg-polynomial).

6 The upper bound theorem

Here we prove thecd-version of the upper bound theorem for polytopes. It
will allow us to reach similar conclusions about the flagh-vector (and the flag
f -vector). We begin by proving certain identities on Eulerian posets. In order
to do this, we introduce two linear maps on the algebra ofcd-polynomials.

Defineα, β : Z〈c,d〉 −→ Z〈c,d〉 by defining them on a monomialw
by

α(w) =
{

αn+1 if w = cn,
0 otherwise,

and β(w) =
{

βn if w = cn,
0 otherwise,

and extending the definitions by linearity. Observe that the linear mapα
increases the degree by1, whereasβ does not change the degree. Also note
for an interval[x, z] we haveα(Ψ([x, z])) = αρ(x,z) andβ(Ψ([x, z])) =
βρ(x,z)−1. The two recursions (3.4) and (3.5) can now be written as

α(w · c) = β(w) · d − α(w) · c, (6.1)

β(w · c) = β(w) · c − 2 · α(w), (6.2)

for anycd-polynomialw.

Lemma 6.1 For anycd-polynomialw we have∑
w

α(w(1)) · w(2) = w − β(w).
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Proof. By linearity it is enough to prove this identity for anycd-monomial
w. We do this by induction onw. The base casew = 1 is straightforward.
Consider now the case whenw = v ·c. Then∆(w) = 2 ·v ⊗1+

∑
v v(1) ⊗

v(2) · c. Hence we have

2 · α(v) +
∑

v

α(v(1)) · v(2) · c = 2 · α(v) + (v − β(v)) · c

= v · c − β(v · c),
where the last step is by (6.2). For the other casew = v · d observe that
∆(w) = v · c ⊗ 1 + v ⊗ c +

∑
v v(1) ⊗ v(2) · d. Thus we have

α(v · c) + α(v) · c +
∑

v

α(v(1)) · v(2) · d

= α(v · c) + α(v) · c + (v − β(v)) · d
= v · d
= v · d − β(v · d),

where the second step is by (6.1). Hence the induction is complete.

Now we can prove two essential identities.

Proposition 6.2 Let [x, z] be an interval in an Eulerian poset. Then∑
x<y<z

αρ(x,y) · Ψ([y, z]) = Ψ([x, z]) − βρ(x,z)−1,

∑
x<y<z

G(αρ(x,y)) · Ψ([y, z]) = αρ(x,z) − Pyr(βρ(x,z)−1).

Proof. To prove the first identity apply Lemma 6.1 to thecd-polynomial
Ψ([x, z]). Then the right-hand side of the lemma isΨ([x, z]) − βρ(x,z)−1.
The left-hand side evaluates to

∑
x<y<z αρ(x,y) ·Ψ([y, z]) by Proposition 2.1

using the linear mapL to beα andM to be the identity map.
To prove the second identity apply the operator Pyr to the first identity

and use the identity (2.1). We then obtain∑
x<y<z

(
G(αρ(x,y)) · Ψ([y, z]) + αρ(x,y) · Pyr(Ψ([y, z]))

)
= Pyr(Ψ([x, z])) − Pyr(βρ(x,z)−1).

Now subtract the second equation of Proposition 4.6 from this identity to
get ∑

x<y<z

G(αρ(x,y)) · Ψ([y, z]) = Pyr(Ψ([x, z])) − Pyr(βρ(x,z)−1)

−Pyr(Ψ([x, z])) + αρ(x,z) = αρ(x,z) − Pyr(βρ(x,z)−1),

which is the desired equality.
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Proposition 6.3 Let P be a polytope andF a nontrivial face ofP . Let
F1, . . . , Fr be the facets ofP that contain the faceF . Then we have that

Pyr(Ψ(∂(F1 ∪ · · · ∪ Fr))) ≥ Ψ((F1 ∪ · · · ∪ Fr)′).

Proof. Let x be a face ofP such thatF ≤ x < P . By Corollary 4.5 we
have that

Ψ(x) ≥
∑

F≤y<x

Ψ(y) · αρ(y,x).

Since the linear operatorG preserves weak inequalities and thatΨ([x, P ]) ≥
0, we have

G(Ψ(x)) · Ψ([x, P ]) ≥
∑

F≤y<x

G(Ψ(y) · αρ(y,x)) · Ψ([x, P ]).

Now sum over allF ≤ x < P .∑
F≤x<P

G(Ψ(x)) · Ψ([x, P ])

≥
∑

F≤x<P

∑
F≤y<x

G(Ψ(y) · αρ(y,x)) · Ψ([x, P ])

=
∑

F≤y<P

∑
y<x<P

G(Ψ(y) · αρ(y,x)) · Ψ([x, P ])

=
∑

F≤y<P

G(Ψ(y)) ·
∑

y<x<P

αρ(y,x) · Ψ([x, P ])

+
∑

F≤y<P

Ψ(y) ·
∑

y<x<P

G(αρ(y,x)) · Ψ([x, P ])

=
∑

F≤y<P

G(Ψ(y)) · (
Ψ([y, P ]) − βρ(y,P )−1

)
+

∑
F≤y<P

Ψ(y) · (
αρ(y,P ) − Pyr(βρ(y,P )−1)

)
,

where the last step is by Proposition 6.2. Move the negative terms to the
left-hand side and also cancel terms, we then obtain∑

F≤x<P

(
G(Ψ(x)) · βρ(x,P )−1 + Ψ(x) · Pyr(βρ(x,P )−1)

)
≥

∑
F≤x<P

Ψ(x) · αρ(x,P ).

Now by the identity (2.1) we have
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Pyr


 ∑

F≤x<P

Ψ(x) · βρ(x,P )−1


 ≥

∑
F≤x<P

Ψ(x) · αρ(x,P ).

Lastly, apply Corollaries 3.2 and 4.4 and the proof is complete.

Proposition 6.4 Let P be a polytope with a vertexv. LetQ be the convex
hull of P with a new vertexw placed beyond all facets ofP containingv
and beneath the rest. Then

Ψ(P ) ≤ Ψ(Q).

Proof. LetF1, . . . , Fr be facets ofP that contain the vertexv and letG1, . . . ,
Gs be the facets ofQ that containw. Then we have that∂(F1 ∪ · · · ∪Fr) =
∂(G1∪· · ·∪Gs) (see [18,§5.2]). Moreover, the pyramid of∂(G1∪· · ·∪Gs)
is (G1 ∪ · · · ∪ Gs)′.

Observe that the polytopesP andQ share the remaining facets. LetΛ
be the union of these remaining facets. Now we have that

Ψ(P ) = Ψ((F1 ∪ · · · ∪ Fr)′) + Ψ(Λ′) − Ψ(∂(F1 ∪ · · · ∪ Fr)) · c
≤ Pyr(Ψ(∂(F1 ∪ · · · ∪ Fr))) + Ψ(Λ′) − Ψ(∂(F1 ∪ · · · ∪ Fr)) · c
= Ψ((G1 ∪ · · · ∪ Gs)′) + Ψ(Λ′) − Ψ(∂(G1 ∪ · · · ∪ Gs)) · c
= Ψ(Q),

where the inequality is Proposition 6.3 and the first and last step is
Lemma 3.3.

Theorem 6.5 LetP be ad-dimensional polytope withn vertices. Then

Ψ(P ) ≤ Ψ(C(n, d)),

whereC(n, d) is the cyclic polytope ind dimensions and withn vertices.

Proof. We can pull each of the vertices of the polytopeP until we obtain a
simplicial polytopeQ with the same number of vertices. By Proposition 6.4
we have thatΨ(P ) ≤ Ψ(Q). Among simplicial polytopes McMullen [22,
23] proved that the cyclic polytope maximizes theh-vector. Since thecd-
polynomialsΦ̌d,i are nonnegative, it follows thatΨ(Q) ≤ Ψ(C(n, d)).

Since the flagh-vector is a nonnegative linear combination of the coeffi-
cients of thecd-index, and the flagf -vector a nonnegative linear combina-
tion of the flagh-vector, we obtain as a corollary two inequalities. The first
of these was observed in [3,§7]; the second is new.

Corollary 6.6 LetP be ad-dimensional polytope withn vertices. ForS ⊆
{1, 2, . . . , d},

fS(P ) ≤ fS(C(n, d)) and hS(P ) ≤ hS(C(n, d)).
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7 Derived inequalities

The strong submultiplicative inequalities for thecd-index given in Theo-
rem 5.1 give rise to quadratic inequalities for the flagf -vector. These arise
by means of the convolution product on chain counts introduced in [20] and
studied extensively in [11]. We compute the resulting derived inequalities
for 4-dimensional polytopes.

First we determine the coefficients of thecd-index in terms of the flagf -
vector. To do this, we recall a related invariant, the sparsek-vector, defined
in [9]. It was shown in [2] that a basis for the flagf -vectors of Eulerian
posets of rankd + 1 is given by thesparsesubsetsS ⊆ {1, . . . , d}, namely
thoseS not containing{i, i + 1}, for all i, and not containingd. We define
thesparse flagk-vector, for sparse subsetsS, by

kS =
∑
T⊆S

(−1)|S|−|T | hT

or, equivalently,
kS =

∑
T⊆S

(−2)|S|−|T | fT . (7.1)

It is immediate that the sparsek-vector also gives a basis for the flagf -
vectors. This can be seen as well from the following unpublished result (due
to the authors and Margaret Readdy), which can be proved by substituting
the expression forkS given in [9, Definition 6.5] into the expression below.

Proposition 7.1 Let w = cn1dcn2dcn3 · · · cnpdcnp+1 be acd-word, and
definem0, . . . , mp bym0 = 1 andmi = mi−1+ni+2. Then the coefficient
of w in thecd-index is given by∑

i1,...,ip

(−1)(m1−i1)+(m2−i2)+···+(mp−ip) ki1i2···ip ,

where the sum is over allp-tuples(i1, i2, . . . , ip) such thatmj−1 ≤ ij ≤
mj − 2.

To obtain these coefficients in terms of thefS , one can invert the equa-
tion (7.1) to obtain

fS =
∑
T⊆S

2|S|−|T | kT .

A different expression for thecd-coefficients in terms of the flagh-vector
is given in [4]. Thecd-coefficients were computed directly through dimen-
sion 8 (rank 9) by Meisinger [21, Appendix D]. The nonnegativity of the
coefficients of thecd-index for polytopes implies that the forms given in
Proposition 7.1 are always nonnegative for polytopes. In fact, applying (5.1)
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whenF is a facet ofP shows that these forms are always increasing with
respect to inclusion of faces. Since eachkS is itself a sum ofcd-coefficients
(see [9, pp. 34–35]), it follows as well thatkS ≥ 0 for polytopes.

We can use the inequalities in Theorem 5.1 to obtain quadratic inequal-
ities on the flagf -vector by making implicit use of a convolution on flag
f -vectors studied in [11,20]. Supposefn

S andfm
T count flags in posets of

ranksm andn, respectively. Then ifP is a poset of rankn + m, it follows
that ∑

x:ρ(x)=n

fn
S ([0̂, x]) · fm

T ([x, 1̂]) = fn+m
S∪{n}∪(T+n)(P ), (7.2)

whereT + n := {i + n | i ∈ T}. Thus if we sum an inequality like (5.1)
or (5.2) over all facesF of a fixed dimensionk, we get on the right-hand
side acd-polynomial with coefficients in terms of the flagf -vector ofP
(only involving flags containingk), while on the left-hand side we have the
polynomialfk(P ) ·Ψ(P ), whose coefficients are products of linear forms in
the flagf -vector withfk(P ). We note that the convolution defined in (7.2)
is dual to the coalgebra structure onZ〈c,d〉 (see [11, Sect. 5.1]).

We illustrate by deriving all such inequalities that can be obtained for
4-dimensional polytopes. There are four cases to check, where the rank ofF
is 1, 2, 3 or 4 and the pyramid is performed onF . The other four cases will
follow by duality. It follows from Proposition 7.1 that for posets of ranks
between 1 and 5 thecd-indices are1, c, c2 +(f1 − 2)d, c3 +(f1 − 2)dc+
(f2 − f1)cd andc4 + (f1 − 2)dc2 + (f2 − f1)cdc + (f3 − f2 + f1 −
2)c2d + (f13 − 2f3 − 2f1 + 4)d2, respectively.

The table below summarizes the nontrivial inequalities coming from
this approach. We have omitted those cases when the derived inequality is
merely the nonnegativity of the relevantcd-coefficient. All inequalities are
expressed in terms of the basis of sparse flag numbersf1, f2, f3 andf13.

ρ(F ) cd−word derived inequality
1 c2d f13 + f1f2 + 2f1 ≤ f1f3 + (f1)2 + 2f2

2 c2d f13 + (f2)2 ≤ f1f2 + f2f3

dc2 3 ≤ f1

d2 2f2(f1 + f3) ≤ f13(f2 − 1) + 6f2

3 dc2 f13 + f3 ≤ f1f3

cdc f13 + f1f3 ≤ f3(f2 + 1)
4 dc2 f13 + f1f2 + 3f1 + f3 ≤ f1f3 + (f1)2 + 3f2

cdc f13 + f1f3 + (f1 − f2)2 + f2 ≤ f2f3 + f1 + f3

c2d (f1 + f3)(2f2 + 3)
≤ (f1 + f3)2 + (f2)2 + 2f1 + f2

d2 f13(f2 + 1) + 2(f1 + f3)2 + 6f2

≤ (f13 + 2f2 + 6)(f1 + f3)
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For completeness, we give below the inequalities derived in a similar
way (for rational polytopes) from the Braden-MacPherson inequality (5.3).
Here the relevantg-polynomials are1, 1, 1 + (f1 − 3)t, 1 + (f1 − 4)t and
1 + (f1 − 5)t + (10 − 4f1 + f2 − 3f3 + f13)t2 (see [21, Appendix B]
or [4]). For these ranks, all the nontrivial inequalities come from comparing
the degree one terms. Again, we omit those obtainable by duality.

ρ(F ) derived inequality
1 2f2 + f1 ≤ (f1)2

2 f13 + 2f2 ≤ f1f2

3 f13 + 2f3 ≤ f1f3

4 f13 + f1f2 + 3f1 + f3 ≤ f1f3 + (f1)2 + 3f2

Note that the first of these is straightforward; in fact, it follows from
a stronger inequality in [1, Theorem 2]. The fourth of these is exactly the
coefficient ofdc2 whenρ(F ) = 4 in the first table.

It is interesting, and somewhat provocative, to note that forf -vectors
of simplicial polytopes, the first nonlinear inequality of the characterizing
set,g2 ≤ g

〈1〉
1 , is also quadratic. One can obtain further inequalities using

this method by breakingP into more than two intervals and applying Theo-
rem 5.1 or the Braden-MacPherson inequality successively. These will still
be quadratic, withfS(P ) ·Ψ(P ) on the left-hand side and a polynomial with
linear coefficients on the right-hand side. It is not clear whether or not the
inequalities so obtained are consequences of the quadratics described above.
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