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THE TORIC h-VECTORS OF PARTIALLY ORDERED SETS

MARGARET M. BAYER AND RICHARD EHRENBORG

Abstract. An explicit formula for the toric h-vector of an Eulerian poset in
terms of the cd-index is developed using coalgebra techniques. The same tech-
niques produce a formula in terms of the flag h-vector. For this, another proof
based on Fine’s algorithm and lattice-path counts is given. As a consequence,
it is shown that the Kalai relation on dual posets, gn/2(P ) = gn/2(P ∗), is the
only equation relating the h-vectors of posets and their duals. A result on the
h-vectors of oriented matroids is given. A simple formula for the cd-index in
terms of the flag h-vector is derived.

1. Introduction

In his paper [12] on face numbers of simplicial polytopes, Sommerville found
a transformation of the f -vector that puts the linear relations on f -vectors into
a simple form. Fifty years later the transformed vector, now called the h-vector,
proved crucial in the Upper Bound Theorem [11] and, finally, the characterization of
f -vectors of simplicial polytopes [6, 13]. The h-vector can be interpreted in several
ways, in particular, as the Betti numbers of the toric variety associated with a
simplicial polytope. This can be generalized to define a “toric” h-vector for every
rational polytope, the vector of middle perversity intersection homology ranks of
the toric variety. The combinatorial formula for this toric h-vector makes sense for
all Eulerian posets, and following Stanley [14, Section 3.14] we define and study it
in this general context.

The formula for the toric h-vector is a recursion on the poset. The recursion can
be used to show that the h-vector can be obtained by a linear transformation from
the flag f -vector of the poset. An explicit formula for that linear transformation was
lacking, however. A recursion for the linear transformation from cd-index to toric
h-vector appears in [3]. In 1993 Fine gave a nonrecursive, combinatorial algorithm
for computing the coefficients of the h-vector in terms of the flag f -vector; see [1].

In Sections 3 and 4 we give closed formulas for the toric h-vector in terms of
the flag h-vector, and in terms of the cd-index. In Section 7 these formulas are
proved using coalgebra techniques. A sketch of another proof using Fine’s algorithm
is given. We note that the formulas can be shown to satisfy the Bayer-Klapper
recursion, which gives a third method of proof. Section 5 includes a proof that the
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Kalai relation on dual posets, gn/2(P ) = gn/2(P ∗), is the only equation relating the
h-vectors of posets and their duals. A result on the h-vectors of oriented matroids
is also given there. A simple formula for the cd-index in terms of the flag h-vector
(or ab-index) is derived in Section 6.

2. Definitions

A partially ordered set (poset) P is ranked if there is a function ρ : P −→ Z such
that for two elements x ≤ y the cardinality of every maximal chain x = x0 < x1 <
· · · < xk = y is given by ρ(y) − ρ(x) + 1. A poset P is graded if it has a minimal
element 0̂, a maximal element 1̂, and it is ranked such that ρ(0̂) = 0. The rank of a
graded poset P is defined by ρ(P ) = ρ(1̂). All the posets in this paper are graded.

For two elements x ≤ y in a poset P define the interval [x, y] to be the set
{z : x ≤ z ≤ y}. Observe that all intervals of a graded poset are also graded
posets. The rank of the interval [x, y] is given by ρ(y)− ρ(x).

Let P be a graded poset of rank n + 1. For S a subset of {1, 2, . . . , n}, let fS
be the number of chains in the poset P such that the set of ranks of elements in
the chain is exactly the set S. The collection of fS where the set S ranges over
all subsets of the set {1, 2, . . . , n} is called the flag f -vector. The flag h-vector is
defined by the alternating sum

hS =
∑
T⊆S

(−1)|S\T |fT .

One can recover the flag f -vector from the flag h-vector by the inverse relation

fS =
∑
T⊆S

hT .

Hence the flag f -vector and the flag h-vector encode the same information of the
poset.

It is convenient to write a generating function for the flag h-vector. The ab-index
is a polynomial in the noncommuting variables a and b. For n a nonnegative integer
and S a subset of {1, 2, . . . , n}, define the ab-monomial uS = u1 · · ·un by letting
ui = a if i 6∈ S, and ui = b otherwise. The ab-index of a graded poset P of rank
n+ 1 is the polynomial

Ψ(P ) =
∑
S

hSuS,

where the sum ranges over all subsets S of {1, 2, . . . , n}. Observe that the ab-index
Ψ(P ) is a homogeneous polynomial of degree one less than the rank of the poset P .

A poset P is Eulerian if its Möbius function is given by µ(x, y) = (−1)ρ(y)−ρ(x).
An equivalent definition is that a poset P is Eulerian if every interval of the
poset satisfies the Euler-Poincaré relation f0 − f1 + · · · + (−1)kfk = 0, where k
is the rank of the interval and fi denotes the number of elements in the interval of
rank i. Examples of Eulerian posets are face lattices of convex polytopes and the
strong Bruhat order in Coxeter groups.

Fine [3] observed that when a poset P is Eulerian, then its ab-index Ψ(P ) may
be written as a polynomial in c = a+b and d = ab+ba. When Ψ(P ) is written in
terms of c and d, it is called the cd-index of the poset. The number of coefficients
in the cd-index is the nth Fibonacci number, which is the dimension of the span
of flag vectors of Eulerian posets. In comparison, the number of coefficients in the
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ab-index (and the flag vector) is 2n, which is much greater. For a short proof of
the existence of the cd-index for Eulerian posets see Stanley [15]. That a poset
P has a cd-index is equivalent to the fact that the flag f -vector of P satisfies the
generalized Dehn-Sommerville relations [2].

The ab-index and cd-index are easy to use because they are coalgebra homo-
morphisms. We include a short explanation here; for more details, see [8]. On the
algebra Z〈a,b〉 define a coproduct ∆ : Z〈a,b〉 −→ Z〈a,b〉 ⊗ Z〈a,b〉 by

∆(v1 · · · vn) =
n∑
i=1

v1 · · · vi−1 ⊗ vi+1 · · · vn,

for a monomial v1 · · · vn, and extend to Z〈a,b〉 by linearity. We abbreviate this
using the Sweedler notation for the coproduct ∆(v) =

∑
v v(1) ⊗ v(2). There is no

co-unit; hence Z〈a,b〉 is not a coalgebra in the classical sense. This coproduct does
not extend to a bialgebra with the ordinary multiplication. Instead it satisfies the
Newtonian condition (see [9, 10]):

∆(uv) =
∑
u

u(1) ⊗ (u(2)v) +
∑
v

(uv(1))⊗ v(2).(2.1)

Using the Newtonian condition it is straightforward to show that the coproduct is
closed on the subalgebra Z〈c,d〉 generated by c and d.

The following proposition states that the ab-index (and hence the cd-index)
is a coalgebra homomorphism. For more details on the corresponding coalgebra
structure of posets see [8].

Proposition 2.1 (Ehrenborg and Readdy). Let P be a graded poset of rank at
least one. Then the coproduct of the ab-index of the poset is given by

∆(Ψ(P )) =
∑

0̂<y<1̂

Ψ([0̂, y])⊗Ψ([y, 1̂]).

This result is useful for reducing calculations on posets to computations involving
only their ab-indices.

3. The toric h-vector

One important invariant of a graded poset is the toric h-vector. We follow
Stanley [14, Section 3.14] in defining it. We begin by defining three linear maps
U≤m, U≥m, and U=m on the polynomial ring Z[x] by U≤m [p(x)] =

∑m
i=0 aix

i,
U≥m [p(x)] =

∑
i≥m aix

i, and U=m [p(x)] = amx
m, where p(x) =

∑
i≥0 aix

i.
Now for each poset we define two polynomials f(P, x) = f(P ) and g(P, x) = g(P ),

which are called the f -polynomial and the g-polynomial of the poset P . Their def-
initions are two intertwined recursions.

Definition.
• For P a poset of rank n+ 1,

f(P, x) = (x− 1)n +
∑

0̂<y<1̂

g([0̂, y])(x− 1)ρ([y,1̂])−1.

• For P a poset of rank n+ 1 and m = bn/2c,
g(P, x) = U≤m [(1− x)f(P, x)] .
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The relations imply that for the unique graded poset of rank 1, both the f - and
g-polynomial are equal to 1.

The toric h-vector of a poset P is defined as the vector of coefficients of the
polynomial f(P ), that is,

f(P, x) =
n∑
i=0

hi(P )xi.

Fine described a combinatorial way to compute the f -polynomial of P in terms
of the flag f -vector of P ; see [1]. (A similar formula was found by Brenti [7].)
Billera suggested that Fine’s formula can be simplified by converting from the
flag f -vector to the flag h-vector. Indeed it then becomes possible to write the
coefficients explicitly, in reasonably simple form.

Let S be a subset of the set {1, 2, . . . , n}. Consider {1, 2, . . . , n} partitioned into
maximal consecutive strings of S and S, with blocks of the partition ordered by
least element. Write the sequence of sizes of the blocks, but add 1 to the leftmost
term if 1 6∈ S. Call the resulting sequence σ(S) = σ1, σ2, . . . , σr.

A set S ⊆ {1, 2, . . . , n} is odd if and only if in the corresponding sequence
σ(S) = σ1, σ2, . . . , σr, all terms except σr are odd, and σr has the same parity as
n if n ∈ S, and the opposite parity from n if n 6∈ S.

The following theorem gives the toric h-vector in terms of the flag h-vector.
The proof is postponed until Section 7. We use the following notation: p(n, k) =(
n
k

)
−
(
n
k−1

)
. Note that for n even, p(n, n/2) is the Catalan number Cn/2.

Theorem 3.1. Let P be a graded poset of rank n+ 1.

1. For 0 ≤ i < n/2,

hi(P ) =
∑

(−1)|S|+n−ip(σr − 1, (σr − n+ 2i)/2)
r−1∏
t=1

p(σt − 1, (σt − 1)/2)hS(P ),

where the sum is over odd sets S ⊆ {1, 2, . . . , n} for which n ∈ S and
σr ≥ n− 2i. (Here σr is the length of the final consecutive string in S.)

2. For n/2 ≤ i ≤ n,

hi(P ) =
∑

(−1)|S|+n−ip(σr − 1, (σr + n− 1− 2i)/2)

×
r−1∏
t=1

p(σt − 1, (σt − 1)/2)hS(P ),

where the sum is over odd sets S ⊆ {1, 2, . . . , n} for which n 6∈ S and
σr ≥ 2i+ 1− n. (Here n − σr is the maximum element of S if S 6= ∅, and
σr = n+ 1 if S = ∅.)

In terms of the sequence σ(S) = σ1, σ2, . . . , σr, the ab-monomial uS is as follows:

1. If 1 6∈ S and n 6∈ S, then r is odd and uS = aσ1−1bσ2aσ3 · · ·bσr−1aσr .
2. If 1 6∈ S and n ∈ S, then r is even and uS = aσ1−1bσ2aσ3 · · ·aσr−1bσr .
3. If 1 ∈ S and n 6∈ S, then r is even and uS = bσ1aσ2bσ3 · · ·bσr−1aσr .
4. If 1 ∈ S and n ∈ S, then r is odd and uS = bσ1aσ2bσ3 · · ·aσr−1bσr .
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For n = 3, here is a listing of the subsets of the set {1, 2, 3}, and the corresponding
ab-words uS and sequences σ(S):

S uS σ(S) S uS σ(S)
∅ aaa 4 {3} aab 3, 1
{1} baa 1, 2 {1, 3} bab 1, 1, 1
{2} aba 2, 1, 1 {2, 3} abb 2, 2
{1, 2} bba 2, 1 {1, 2, 3} bbb 3

4. The formula in terms of the ab-index and cd-index

In this section the formula of Theorem 3.1 is presented in another guise. We
specify the portion of the toric h-vector associated with each ab-monomial and
with each cd-monomial; this extends to the computation of the toric h-vector of P
from the ab-index and cd-index of P .

It is convenient to define three sequences of polynomials. For nonnegative inte-
gers n, let Qn(x) =

∑b(n−1)/2c
k=0 (−1)kp(n− 1, k)xk, and let Rn(x) = xn−1Qn(x−1).

Thus Qn(x) is of degree b(n − 1)/2c and has constant term 1, while Rn(x) is of
degree n− 1, has no terms of degree less than (n− 1)/2, and has leading coefficient
1. Finally, for n odd we define a monomial,

Tn(x) = (−1)(n−1)/2p(n− 1, (n− 1)/2)x(n−1)/2.

(For even n, let Tn(x) = 0.)
Here is a table of these polynomials for small n:

n Qn(x) Rn(x) Tn(x)
1 1 1 1
2 1 x 0
3 −x+ 1 x2 − x −x
4 −2x+ 1 x3 − 2x2 0
5 2x2 − 3x+ 1 x4 − 3x3 + 2x2 2x2

6 5x2 − 4x+ 1 x5 − 4x4 + 5x3 0
7 −5x3 + 9x2 − 5x+ 1 x6 − 5x5 + 9x4 − 5x3 −5x3

Theorem 4.1. For P a poset of rank n+ 1 with ab-index Ψ(P ) =
∑
S hSuS, the

toric h-vector is given by f(P, x) =
∑

S hSf(uS, x), where f(uS , x) equals

1. xb(r−1)/2cQσr (x)
r−1∏
t=1

Tσt(x) if n ∈ S,

2. xbr/2cRσr (x)
r−1∏
t=1

Tσt(x) if n 6∈ S.

Proof of the equivalence of Theorem 3.1 and Theorem 4.1. We show that the two
statements give the same coefficient of hS(P ) in the h-vector polynomial f(P, x).
Below are the details for the case where n ∈ S; minor modifications give the case
where n 6∈ S. Let α(n, S, i) = |S|+ n− i− (n− σr)/2 + b(r − 1)/2c. Theorem 3.1
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gives the coefficient of hS(P ) as
b(n−1)/2c∑
i=(n−σr)/2

(−1)|S|+n−ip(σr − 1, (σr − n+ 2i)/2)
r−1∏
t=1

p(σt − 1, (σt − 1)/2)xi

=

[
r−1∏
t=1

(−1)(σt−1)/2p(σt − 1, (σt − 1)/2)x(σt−1)/2

]
xb(r−1)/2c

×
b(n−1)/2c∑
i=(n−σr)/2

(−1)α(n,S,i)p(σr − 1, (σr − n+ 2i)/2)xi−(n−σr)/2

=

[
r−1∏
t=1

(−1)(σt−1)/2p(σt − 1, (σt − 1)/2)x(σt−1)/2

]
xb(r−1)/2c

×
b(σr−1)/2c∑

k=0

(−1)|S|+n+b(r−1)/2c+kp(σr − 1, k)xk.

Now |S|+ n+ b(r − 1)/2c ≡ 0 (mod 2), so this equals[
r−1∏
t=1

(−1)(σt−1)/2p(σt − 1, (σt − 1)/2)x(σt−1)/2

]
xb(r−1)/2c

×
b(σr−1)/2c∑

k=0

(−1)kp(σr − 1, k)xk,

which is part (1) of Theorem 4.1.

For P an Eulerian poset, the ab-index gives rise to the more compact cd-index.
The toric h-vector can be computed from the cd-index in a way similar to that
given by Theorem 4.1.

Theorem 4.2. Let P be an Eulerian poset of rank n + 1 with cd-index Ψ(P ) =∑
w ξww. The toric h-vector of P is given by f(P, x) =

∑
w ξwf(w, x), where

f(ck1dck2d · · ·dckrdck, x) = xr(xRk(x) +Qk(x))
r∏
j=1

Tkj+1(x).

Similarly, writing the g-polynomial as g(P, x) =
∑
w ξwg(w, x),

g(ck1dck2d · · ·dckrdck, x) = xrQk+1(x)
r∏
j=1

Tkj+1(x).

(Recall that Tn(x) = 0 if n is even. Also set xR0(x) +Q0(x) = 1.)

Observe that g(ck1dck2d · · ·dckrdck, x) is zero if any of k1, . . . , kr is odd. There
are only 2bn/2c cd-monomials such that all the ki’s are even. Hence the g-polynomial
g(P, x) depends on only 2bn/2c of the coefficients of Ψ(P ). A similar observation
holds for the f -polynomial.

Section 6 gives a formula for the cd-index in terms of the ab-index, which con-
nects Theorems 4.1 and 4.2. The proofs of the formulas for the toric h-vector in
terms of the ab-index and the cd-index are found in Section 7. Another way to
prove the f -polynomial formula of Theorem 4.2 is to show (with tedious calcula-
tions) that it solves the recurrence given in [3].
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5. Consequences for the g-vector

From the formula of Theorem 4.2 it is easy to prove the following identity conjec-
tured by Kalai. This was already done using the recurrence formula in [3]. Recall
that gi = hi − hi−1.

Theorem 5.1 (Kalai, Bayer-Klapper). If P is an Eulerian poset of odd rank n+1,
and P ∗ is the dual poset, then gn/2(P ) = gn/2(P ∗).

We can now prove that other than the trivial relation, g0(P ) = g0(P ∗), this is
the only linear relation between the g-vectors of Eulerian posets and their duals.

Let Pn be the set of rank n+ 1 Eulerian posets. Let gi : Pn → Z be the function
giving the coefficient of xi in g(P, x). Let g∗i : Pn → Z be the function whose value
at P is the coefficient of xi in the g-polynomial of the dual polytope P ∗.

Theorem 5.2. For fixed n the only linear relations among the functions g0, g1,
. . . , gbn/2c, g∗0 , g∗1 , . . . , g∗bn/2c are g0 = g∗0 and, for n even, gn/2 = g∗n/2. The set
of g’s and g∗’s thus has dimension n.

Proof. We write a matrix M for the functions gi and g∗i in terms of the cd-index.
Order the n functions g0, g1, g∗1 , g2, g∗2 , . . . , g∗bn/2c−1, gbn/2c, ending in g∗bn/2c if n
is odd. A cd-word is called a border word if it is of the form cn−2jdj or djcn−2j ,
0 ≤ j ≤ n/2. There are n border words. Order all cd-words with the border
words first, in increasing degree of d, and with djcn−2j preceding cn−2jdj . The
nonborder words follow the border words in any order. Now write the matrix M
with n rows, indexed by the functions in the order described above, and a Fibonacci
number of columns, indexed by the cd-words in the order described above.

We show that the first n columns of M form a lower triangular submatrix.
Theorem 4.2 gives, for 1 ≤ j ≤ n/2,

g(cn−2jdj , x) =
{

(−1)(n−2j)/2p(n− 2j, (n− 2j)/2)xn/2 if n is even,
0 if n is odd.

So the column of M indexed by the cd-word cn−2jdj (j ≥ 1) has nonzero entries in
row gi only if i = n/2. Duality says that the column of M indexed by the cd-word
djcn−2j has nonzero entries in row g∗i only if i = n/2. For these latter border
words, g(djcn−2j , x) = xjQn−2j(x), which includes only terms of degree at least j.
So the column of M indexed by the cd-word djcn−2j has nonzero entries in row gi
only if i ≥ j (and has entry 1 in row gj). Similarly, the column of M indexed by
the cd-word cn−2jdj has nonzero entries in row g∗i only if i ≥ j (and has entry 1
in row g∗j ).

In summary, the first nonzero entry in the column indexed by djcn−2j is in
row gj , and the first nonzero entry in the column indexed by cn−2jdj is in row g∗j .
Thus the first n columns of the matrix M form a lower triangular submatrix. Since
the coefficients of the cd-words, as functions on polytopes, are linearly independent,
so are the functions in the set {g0, g1, . . . , gbn/2c, g

∗
1 , . . . , g

∗
b(n−1)/2c}.

We close this section with an observation on g-vectors of zonotopes, or, more
generally, oriented matroids.

Proposition 5.3. Let P be the lattice of regions of an oriented matroid. Let n+ 1
be the rank of P . Then

g(P, x) ≡ U≤bn/2c
[
(1 + x)n+1

]
(mod 2).
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Proof. Let P be the lattice of regions of an oriented matroid of rank n+ 1. In [5]
it is shown that in the cd-index of P , 2j divides the coefficient ξw of a cd-word
w, if w contains j d’s. In particular, the only coefficient that can be odd is the
coefficient of w = cn, which is always 1. So g(P, x) ≡ ξcng(cn, x) ≡ Qn+1(x)
(mod 2). Thus for 0 ≤ i ≤ n/2, gi(P ) ≡ p(n, i) ≡

(
n
i

)
+
(
n
i−1

)
≡
(
n+1
i

)
(mod 2). So

g(P, x) ≡ U≤bn/2c
[
(1 + x)n+1

]
(mod 2).

6. Consequences for the cd-index

A comparison of the formulas for the toric h-vector in terms of the ab-index
and cd-index suggests a transformation from cd-index to ab-index. For Eulerian
posets of rank n + 1, the cd-index consists of a Fibonacci number of coefficients
encoding the ab-index, which has 2n coefficients. Each ab-coefficient can be written
in a unique way as a linear combination of cd-coefficients, but not vice versa. We
present here a simple algorithm for computing the cd-index from the ab-index.

Let v = ck1dck2d · · ·dckrdck, with the degree of v equal to n. One of the
ab-words in the expansion of v is obtained by replacing each d by ba, replacing
the last k c’s by k a’s, and replacing all other c’s by b’s. We distinguish this
ab-word as s(v) = bk1+1abk2+1a · · ·abkr+1ak+1. Write Tv for the set of locations
of the b’s in s(v). Partition Tv into its maximal intervals, Tv = T1 ∪ T2 ∪ · · · ∪ Tr,
where |Ti| = ki + 1. In the following write [r] for {1, 2, . . . , r}. For I ⊆ [r], let
〈I〉 =

⋃
i∈I Ti ⊆ Tv. Thus u〈I〉 is the ab-word obtained from s(v) by replacing the

ith substring of ki + 1 b’s by ki + 1 a’s, for all i 6∈ I. In particular, u〈∅〉 = u∅ = an,
and u〈[r]〉 = uTv = s(v). Recall that h〈I〉 is the coefficient of u〈I〉 in the ab-index
Ψ(P ) of a poset P and, for a cd-word w, ξw is the coefficient of w when Ψ(P ) is
written in terms of cd-words.

Theorem 6.1. ξv =
∑
I⊆[r]

(−1)r−|I|h〈I〉.

For example, s(dccd) = babbba and ξdccd = h1345 − h345 − h1 + h∅.

Proof. For w a cd-word and u an ab-word, w covers u if and only if u occurs as
a monomial in the expansion of w by c = a + b, d = ab + ba. Equivalently, if
we match up the symbols of w with those of u by position, each c is matched to
a single a or b, and each d covers either ab or ba (not aa or bb). The symbol d
represents a place where the ab-word must have a change from a to b or vice versa.
(Changes are also permitted where w has c’s.)

For each set S ⊆ [n], hS is the sum of ξw, over those cd-words w for which w
covers uS . Thus, ∑

I⊆[r]

(−1)r−|I|h〈I〉 =
∑
I⊆[r]

(−1)r−|I|
∑
w

w covers u〈I〉

ξw.

Note that, by construction, if ab or ba occurs in positions j and j+ 1 of u〈I〉, then
the same pair occurs in positions j and j + 1 of s(v). Thus, if a cd-word w covers
u〈I〉 for some I, then w covers s(v).

Consider a fixed cd-word w that covers s(v). Define Iw to be the set of i ∈ [r]
such that some d in w covers some b in the ith substring of b’s in s(v). Then for
I ⊆ [r], u〈I〉 is covered by w if and only if Iw ⊆ I. This is because we can change a
substring of b’s in s(v) to a’s and preserve the covering relation of w as long as we
do not change an ab or ba covered by d.
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Thus, ∑
I⊆[r]

(−1)r−|I|h〈I〉 =
∑
w

w covers s(v)

ξw
∑
I

w covers u〈I〉

(−1)r−|I|

=
∑
w

w covers s(v)

ξw
∑
I

Iw⊆I⊆[r]

(−1)r−|I|

=
∑
w

w covers s(v)
and Iw=[r]

ξw.

It remains to show that if w covers s(v) and Iw = [r], then w = v. The hypothesis
says that for all i, at least one b in the ith substring of b’s in s(v) is covered by some
d in w. That b must, of course, be the leftmost or rightmost b in the substring.
Since s(v) starts with a substring of (at least one) b’s, the first d of w must cover
the ba that occurs at the right-hand end of substring 1. The next d in w cannot
cover the same a, so it must cover the next ba, occurring at the right-hand end of
substring 2. Continuing, we see that the d’s in w all occur in the locations of the
ba’s in s(v), and thus w = v. So

∑
I⊆[r](−1)r−|I|h〈I〉 = ξv.

Billera, Ehrenborg, and Readdy [5, 4] proved that for w a cd-word containing
r d’s, the coefficient ξw in the cd-index of an oriented matroid (in particular,
a zonotope) is divisible by 2r. Theorem 6.1 can be used to give another direct
proof of this result. The original proof in [5] used the “sparse k-vector.” Those
authors later found a formula for the cd-index in terms of the sparse k-vector. This
means that the cd-index can be written in terms of the sparse flag numbers, that
is, those fS for which S excludes n and contains no consecutive pair. This is of
interest because the entire flag vector can be linearly generated by these sparse flag
numbers.

7. Proofs of the h-vector formulas

7.1. Preliminaries. Define an algebra map κ from Z〈a,b〉 to Z[x] by κ(a) = x−1
and κ(b) = 0. The ab-index of a graded poset P contains the term aρ(P )−1 with
coefficient 1, so κ(Ψ(P )) = (x− 1)ρ(P )−1.

We define now two linear maps on ab-polynomials that correspond to the f - and
g-polynomials of posets.

Definition. Define two linear maps f and g from Z〈a,b〉 to Z[x] by the following
two relations:
• For any monomial v,

f(v) = κ(v) +
∑
v

g(v(1))κ(v(2)).

• For v a monomial of degree n and m = bn/2c,
g(v) = U≤m [(1− x)f(v)] .

The recursion for f(v) without the Sweedler notation is

f(v) = κ(v) +
n∑
i=1

g(v1 · · · vi−1)κ(vi+1 · · · vn),
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where v = v1 · · · vn. Observe that this definition gives f(1) = 1 and hence g(1) = 1.

Proposition 7.1. For all graded posets P , f(P ) = f(Ψ(P )) and g(P ) = g(Ψ(P )).

Proof. The proof is by induction on the rank of the poset P . If ρ(P ) = 1, then
f(P ) = g(P ) = 1, Ψ(P ) = 1, and f(1) = g(1) = 1.

Assume now that P is a graded poset of rank n+ 1. Let W be Ψ(P ). We begin
by verifying the first identity,

f(P ) = (x− 1)n +
∑

0̂<y<1̂

g([0̂, y])(x− 1)ρ([y,1̂])−1

= κ(Ψ(P )) +
∑

0̂<y<1̂

g(Ψ([0̂, y]))κ(Ψ([y, 1̂]))

= κ(W ) +
∑
W

g(W(1))κ(W(2))

= f(W ).

In the third step we used Proposition 2.1, that is, the fact that the ab-index is a co-
algebra homomorphism. We finish by observing that g(P ) = U≤m [(1 − x)f(P )] =
U≤m [(1− x)f(W )] = g(W ).

We need some facts about the polynomials Qn(x), Rn(x), and Tn(x).

Proposition 7.2. For n a positive integer,

Qn+1(x) = (1− x)Qn(x) + xTn(x),
Rn+1(x) = (x− 1)Rn(x) + Tn(x).

An inductive proof of the first identity uses the following two facts about p(n, k):
p(n + 1, k) = p(n, k) + p(n, k − 1) for all n and k, and for n odd p(n, bn/2c) =
p(n + 1, bn/2c+ 1). The second identity follows by substituting 1/x into the first
identity, multiplying by xn+1 and using xnTn(1/x) = Tn(x).

Corollary 7.3. The polynomial sequence Qn(x) satisfies the recursion

Qn+1(x) = U≤m [(1− x)Qn(x)] ,

where m = bn/2c.

Proof. Observe first that U≤m [xTn(x)] = 0, since if n is even Tn(x) is equal to
zero, and if n is odd the degree of xTn(x) is greater than m. Since Qn+1(x) has
degree m,

Qn+1(x) = U≤m [Qn+1(x)]
= U≤m [(1 − x)Qn(x) + xTn(x)]
= U≤m [(1 − x)Qn(x)] .
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7.2. Proof of the ab-index formula.

Lemma 7.4. For every ab-monomial v,

f(va) = (x− 1)f(v) + g(v),
f(vb) = g(v).

Proof. Observe that κ(va) = κ(v)(x − 1). By the Newtonian condition (equation
2.1) ∆(va) =

∑
v v(1) ⊗ v(2)a + v ⊗ 1. Thus

f(va) = κ(va) +
∑
v

g(v(1))κ(v(2)a) + g(v)κ(1)

= κ(v)(x − 1) +
∑
v

g(v(1))κ(v(2))(x− 1) + g(v)

= f(v)(x− 1) + g(v).

The second identity is proved along the same lines, using κ(vb) = 0.

A direct application of this lemma gives the following.

Lemma 7.5. For v any ab-monomial of degree n and m = b(n+ 1)/2c,

g(vb) = U≤m [(1− x)g(v)] .

If v is an ab-monomial of odd degree, then g(vb) = (1− x)g(v).

Lemma 7.6. For v any ab-monomial of degree n and m = bn/2c,

g(va) =
{
U=m+1 [(x− 1)f(v)] if n is odd,

0 if n is even.

Proof. By Lemma 7.4

f(va) = (x − 1)f(v) + g(v)
= (x − 1)f(v) + U≤m [(1− x)f(v)]
= U>m [(x− 1)f(v)] .

Hence

g(va) = U≤b(n+1)/2c [(1− x)f(va)]
= U≤b(n+1)/2c [(1− x)U>m [(x− 1)f(v)]] .

If n is even, then U≤m [(1 − x)U>m [p(x)]] = 0; hence g(va) = 0. If n is odd, then
b(n+ 1)/2c = m+ 1 so g(va) = U=m+1 [(x− 1)f(v)].

Proposition 7.7. For any two ab-monomials u and v,

f(uabv) = g(ua)f(bv),
g(uabv) = g(ua)g(bv).



4526 MARGARET M. BAYER AND RICHARD EHRENBORG

Proof. The proof is by induction on the degree |v| of v. The induction basis is
when v = 1. Let |u| = n and let m = bn/2c. In the first case, when n is even,
g(uab) = U≤m+1 [(1− x)g(ua)] = 0 = g(ua). When n is odd,

g(uab) = U≤m+1 [(1− x)g(ua)]
= U≤m+1 [(1− x)U=m+1 [(x− 1)f(u)]]
= U=m+1 [(x− 1)f(u)]
= g(ua).

Since g(b) = 1 the second identity holds for v = 1. The first identity follows from
f(uab) = g(ua) = g(ua)f(b), since f(b) = 1.

Now consider the induction step. Assume that the two statements hold for words
of degree less than |v|. In particular, it holds for the words v(1) in the coproduct.
Then

∆(uabv) =
∑
u

u(1) ⊗ u(2)abv + u⊗ bv + ua⊗ v +
∑
v

uabv(1) ⊗ v(2).

Hence, using κ(b) = 0,

f(uabv) = κ(uabv) +
∑
u

g(u(1))κ(u(2)abv) + g(u)κ(bv)

+ g(ua)κ(v) +
∑
v

g(uabv(1))κ(v(2))

= g(ua)

(
κ(v) +

∑
v

g(bv(1))κ(v(2))

)
= g(ua)f(bv).

This verifies the first identity. Assume that |u| = n and |v| = k. Then when n is
even,

g(uabv) = U≤b(n+k+2)/2c [(1− x)f(uabv)]
= U≤b(n+k+2)/2c [(1− x)g(ua)f(bv)] = 0
= g(ua)g(bv).

Now let n be odd and let m = bn/2c; thus m+ 1 = (n+ 1)/2. Then

g(uabv) = U≤b(n+k+2)/2c [(1 − x)g(ua)f(bv)]

= U≤b(n+k+2)/2c
[
U=(n+1)/2 [(x− 1)f(v)] (1− x)f(bv)

]
= U=(n+1)/2 [(x− 1)f(v)]U≤b(k+1)/2c [(1 − x)f(bv)]
= g(ua)g(bv).

This completes the induction.

In order to evaluate f(v) and g(v) for any ab-monomial v, we need to know the
f - and g-polynomials evaluated on the monomials bn, an, and bnak. The following
proposition has a straightforward proof by induction.

Proposition 7.8. For any positive integer n,

f(bn) = Qn(x), g(bn) = Qn+1(x),
f(an) = Rn+1(x), g(an) = Tn+1(x).
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Moreover, for any positive integers n and k,

f(bnak) = xTn(x)Rk(x),

g(bnak) = xTn(x)Tk(x).

Theorem 4.1 follows now by applying Proposition 7.1 to the poset, and evaluating
f(Ψ(P )) with Propositions 7.7 and 7.8.

7.3. Proof of the cd-index formula. The algebra map κ from Z〈a,b〉 to Z[x]
restricts to an algebra map from Z〈c,d〉 to Z[x]. Observe that κ(c) = x − 1 and
κ(d) = 0. The next lemma follows easily from Lemma 7.4.

Lemma 7.9. For any cd-monomial v,

f(vc) = (x− 1)f(v) + 2g(v),
f(vd) = (x− 1)g(v) + g(vc).

The reciprocal theorem [14, Theorem 3.14.9] says that if P is an Eulerian poset
of rank n+ 1, then f(P, x) = xnf(P, 1/x). Since the cd-indices of Eulerian posets
span the linear space of all cd-polynomials, the reciprocal theorem also holds for a
cd-monomial v. That is, f(v, x) = xnf(v, 1/x). Hence if we know the g-polynomial
of a monomial, we are able to compute the f -polynomial of the monomial.

Proposition 7.10. For v any cd-monomial of degree n and m = b(n+ 1)/2c,

g(vc) = U≤m [(1 − x)g(v)] .

Proof. Suppose n is odd, m = (n + 1)/2. Expand the cd-monomial v as a sum
of ab-monomials. Applying Lemma 7.6 to each summand and recombining gives
g(va) = U=m [(x− 1)f(v)]. Write f(v) =

∑n
i=0 hix

i. By the reciprocal theorem
[14, Theorem 3.14.9], hi = hn−i. In particular, for n odd hm = hm−1, so g(va) =
U=m [(x− 1)f(v)] = 0. Lemma 7.6 also gives g(va) = 0 for n even. So g(vc) =
g(va) + g(vb) = g(vb) = U≤m [(1− x)g(v)], by applying Lemma 7.5 to each ab-
summand of v.

If v is a cd-monomial of odd degree, then g(vc) = (1 − x)g(v).

Proposition 7.11. Let v be a cd-monomial of degree n. Let m = bn/2c. Then

g(vd) = f(vd) =
{
xU=m [g(v)] if n is even,

0 if n is odd.

Proof. By Lemma 7.9 and Proposition 7.10,

f(vd) = (x− 1)g(v) + g(vc)
= (x− 1)g(v) + U≤b(n+1)/2c [(1− x)g(v)] .

The degree of (x− 1)g(v) is bn/2c+ 1. So for n odd all terms cancel, and g(vd) =
f(vd) = 0. For n even, m = n/2, and f(vd) = U=m+1 [(x− 1)g(v)] = xU=m [g(v)].
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Hence

g(vd) = U≤m+1 [(1− x)f(vd)]
= U≤m+1 [(1− x)xU=m [g(v)]]
= xU=m [g(v)] .

By Propositions 7.10 and 7.11 we are now able to evaluate the g-polynomial
of any cd-word. For instance, g(dn) = xn. The following result facilitates these
computations.

Proposition 7.12. For two cd-monomials u and v,

g(udv) = g(ud)g(v),
f(udv) = g(ud)f(v).

Proof. We begin by proving the first identity. Consider the two cases when |u| is
odd and when |u| is even. First, when |u| is odd, the right hand side is equal to 0.
The left hand side may be computed by the recursions of the last two propositions
from knowing g(ud). Hence the left hand side is also equal to zero.

Hence it remains to consider the case when |u| is even. Assume that |ud| = 2k.
The proof is by induction on the degree of v. The base case is v = 1, where there
is nothing to prove. Consider first the case when v = v′c, where n = |v|. So
|udv′c| = 2k + n. Then

g(udv′c) = U≤b(2k+n)/2c [(1− x)g(udv′)]

= U≤k+bn/2c [(1− x)g(ud)g(v′)]

= g(ud)U≤bn/2c [(1− x)g(v′)]

= g(ud)g(v′c).

The second case is when v = v′d. Let n = |v′|. So |udv′| = 2k + n. If n is odd,
then g(udv′d) = 0 = g(ud)g(v′d). If n is even, then

g(udv′d) = xU=b(2k+n)/2c [g(udv′)]

= xU=k+bn/2c [g(ud)g(v′)]

= xg(ud)U=bn/2c [g(v′)]

= g(ud)g(v′d).

This completes the induction, and hence proves the first identity. A proof for the
second identity is as follows. By the definition of f and by recalling that κ(d) = 0,
we obtain the expansion

f(udv) = g(u)κ(cv) + g(uc)κ(v) +
∑
v

g(udv(1))κ(v(2))

= (x− 1)g(u)κ(v) + g(uc)κ(v) + g(ud)
∑
v

g(v(1))κ(v(2))

= (x− 1)g(u)κ(v) + g(uc)κ(v) + g(ud)f(v)− g(ud)κ(v)
= g(ud)f(v) + ((x− 1)g(u) + g(uc)− f(ud))κ(v)
= g(ud)f(v).

The last two lines come from Lemma 7.9 and Proposition 7.11.
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In the proof we observe that g(udv) = 0 if |u| is odd. This gives the fact, noted
after the statement of Theorem 4.2, that g(ck1dck2d · · ·dckrdck, x) = 0 if any of
the ki are odd.

In order to evaluate g(v) and f(v) for any cd-monomial v, we need to know
g(cn), g(cnd) and f(cn).

Proposition 7.13. For any nonnegative integer n,

g(cn) = Qn+1(x),
g(cnd) = xTn+1(x),
f(cn) = xRn(x) +Qn(x).

(Recall that Tn(x) = 0 if n is even, and xR0(x) +Q0(x) = 1.)

The first identity is due to Stanley and is essentially Exercise 70c in Chapter 3
in [14]. The first and third identities follow by induction. The second is proved by
Proposition 7.11.

The proof of Theorem 4.2 is now similar to the proof of Theorem 4.1. Ap-
ply Proposition 7.1 to the cd-index and evaluate the f - and g-polynomials with
Propositions 7.12 and 7.13.

7.4. A combinatorial approach. The formulas of Theorems 3.1 and 4.1 for the
h-vector involve the Catalan numbers, p(n, n/2). In this section we give a combi-
natorial explanation for this.

A lattice path is a sequence of steps in Z2, where each step moves one to the
right and either one up (adding (1, 1)) or one down (adding (1,−1)). For n even,
p(n, n/2) is the number of lattice paths from (0, 0) to (n, 0) that never go below
the x-axis; see for instance [16].

Fine gave the following formula for the h-vector of a polytope P in terms of the
flag vector of P . It applies more generally to Eulerian posets. Let P have rank
n+ 1 and let S ⊆ [n]. A valid S-diagram is a sequence of n +1’s and −1’s so that
for each s ∈ S, the sum of the terms up to position s is positive. Let jS,i be the
number of valid S-diagrams with i −1’s and n − i +1’s. If n = 0 we understand
j∅,0 = 1.

Theorem 7.14 (Fine). For any rank n+ 1 Eulerian poset P ,

f(P, x) =
n∑
i=0

xi
∑
S⊆[n]

(−1)|S|+n−ijS,ifS(P ).

This can be proved directly from the recursions for the h-vector and g-vector.
The idea is that the fS-term in hk(P ) comes from fT -terms in gi(y), where T =
S \ {maxS}, i ≤ k, and y ranges over the elements of P of rank maxS. In gi(y),
fT occurs with coefficient (−1)|T |+maxS−i(jT,i + jT,i−1). This is then multiplied
by (x − 1)n−maxS . On the other hand, a valid S-diagram with k −1’s arises from
valid T -diagrams with i or i− 1 −1’s as follows. Start with the T -diagram; extend
it in position maxS with a +1 (if T has i −1’s) or with a −1 (if T has i− 1 −1’s);
fill the diagram out to length n with k − i −1’s and the rest +1’s. The number
of choices is the binomial coefficient contributed by (x− 1)n−maxS in the recursion
for the h-vector.

Now Fine’s flag f -vector formula can be converted easily to a flag h-vector for-
mula. For fixed sequence λ of n ±1’s, there is a unique maximal set S = S(λ) ⊆ [n]
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for which λ is a valid S-diagram. Furthermore, for all T ⊆ S(λ), λ is a valid
T -diagram. Let iλ be the number of −1’s in λ. Then the formula above becomes

f(P, x) =
∑

λ∈{+1,−1}n
xiλ

∑
T⊆S(λ)

(−1)|T |+n−iλfT (P )

=
∑

λ∈{+1,−1}n
xiλ(−1)|S(λ)|+n−iλhS(λ)(P ).

Thus f(P, x) =
∑
S⊆[n]

∑n
i=0(−1)|S|+n−imS,ix

ihS(P ), where mS,i is the number of
valid S-diagrams λ for which S(λ) = S and iλ = i. In other words, the coefficient
of hS(P ) in hi is (plus or minus) the number of valid ±1-sequences having i −1’s
for which the set S is maximal.

This coefficient is the coefficient of xi in f(uS, x), where uS is the ab-word
associated with the set S. Theorems 3.1 and 4.1 say it is the product of various
p(k, k/2), where k + 1 is the length of a consecutive (but not final) string of a’s or
b’s in uS , and some coefficient of either Qk−1(x) (if uS ends in bk) or Rk−1(x) (if
uS ends in ak). We show how these factors come from counting valid ±1-sequences
associated to the set S.

Break uS into its maximal consecutive strings of a’s and b’s. For S to be maximal
for a sequence λ, when restricted to the positions of a string of a’s, λ must have
nonpositive partial sums; when restricted to the positions of a string of b’s, it must
have positive partial sums. At the boundary between a-strings and b-strings, the
partial sums must change between 0 and +1.

Here is an example of part of an S-diagram, where uS contains the substring
b3a5. The locations of the b’s are marked with vertical bars to the left.

λ · · · **|+1|*| * -1****|+1 · · ·
partial sums · · · *0 +1 * +1 0 ***0 +1 · · ·

How many different λs can fill out this diagram? Associate with each sequence
λ a lattice path, with +1 representing a step up and −1 representing a step down.
The partial sum of a sequence to some point represents the height of the lattice
path at that point. The possible choices of λi for the locations of the three b’s
correspond to lattice subpaths that go from (0, 1) to (2, 1) without going below the
line y = 1. More generally, if there are k + 1 consecutive b’s, the lattice subpaths
go from (0, 1) to (k, 1). Here k must be even and the number of such subpaths
is p(k, k/2). Similarly, the possible choices of λi for the locations of the five a’s
correspond to lattice subpaths that go from (0, 0) to (4, 0) without going above the
line y = 0. More generally, if there are k + 1 consecutive a’s, the lattice subpaths
go from (0, 0) to (k, 0). Again k must be even and the number of such subpaths is
p(k, k/2).

For a final substring of a’s or b’s, the right-hand partial sum (the total sum of
the sequence) is no longer fixed; it is merely restricted to be positive (if uS ends
in b) or nonpositive (if uS ends in a). Sequences λ with different total sums count
towards different hi. The possible choices of λi for the locations of a final string of
k b’s correspond to lattice subpaths that start at (0, 1) and do not go below the
line y = 1. The number of these containing j ≤ (k− 1)/2 downward steps (−1’s in
λ) is p(k − 1, j). A similar argument counts the number of subsequences of λ that
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can fill a final substring of ak. Here there must be more −1’s than +1’s, and the
number with j −1’s is p(k − 1, k − 1− j).

Details can be added to complete an alternative proof of the formula for the
h-vector in terms of the ab-index.
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