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Abstract

We present two classes of linear inequalities that the flag f -vectors of zonotopes satisfy. These
inequalities strengthen inequalities for polytopes obtained by the lifting technique of Ehrenborg [13].

1 Introduction

The systematic study of flag f -vectors of polytopes was initiated by Bayer and Billera [2]. Billera
then suggested the study of flag f -vectors of zonotopes; see the dissertation of his student Liu [22].
The essential computational results of the field appeared in the two papers by Billera, Ehrenborg and
Readdy [7, 8]. In this paper, we present two classes of linear inequalities for the flag f -vectors of
zonotopes. These classes are motivated by Ehrenborg’s recent results for polytopes [13].

The flag f -vector of a convex polytope contains all the enumerative incidence information between
the faces of the polytope. For an n-dimensional polytope the flag f -vector consists of 2n entries, in
other words, the flag f -vector lies in the vector space R2n . Bayer and Billera [2] showed that the flag
vectors of n-dimensional polytopes span a subspace of R2n , called the generalized Dehn-Sommerville
subspace and denoted by GDSSn. Bayer and Klapper [5] proved that GDSSn is naturally isomorphic
to the nth homogeneous component of the non-commutative ring R〈c,d〉, where the grading is given
by deg(c) = 1 and deg(d) = 2. Hence, the flag f -vector of a polytope P can be encoded by a
non-commutative polynomial Ψ(P ) in the variables c and d, called the cd-index.

The next essential step is to consider linear inequalities that the flag f -vector of polytopes satisfy.
The known linear inequalities are: the non-negativity of the toric g-vector [19, 21, 26], inequalities
obtained by the Kalai convolution [20], and that the cd-index is minimized coefficientwise on the
n-dimensional simplex Σn [6]. Recently, Ehrenborg [13] introduced a lifting technique that allows one
to use lower dimensional inequalities to obtain higher dimensional inequalities. A special case of this
lifting technique is the following inequality:
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Theorem 1.1 Let u, q and v be three cd-monomials such that the sum of the degrees of u, q and v
is n and the degree of q is k. Let ∆q denote the coefficient of the cd-monomial q in the cd-index of a
k-dimensional simplex Σk. Then for all n-dimensional polytopes P we have〈

u · (q −∆q · ck) · v |Ψ(P )
〉
≥ 0

where the bracket 〈·|·〉 is the standard inner product on R〈c,d〉.

The purpose of this paper is to improve Theorem 1.1 for zonotopes.

Recall that a zonotope is a polytope obtained as the Minkowski sum of line segments. In particular,
the flag f -vectors of n-dimensional zonotopes lie in the subspace GDSSn. Billera, Ehrenborg and
Readdy [8] proved that flag f -vectors of zonotopes do not lie in any proper subspace of GDSSn. They
later showed that among all n-dimensional zonotopes (and more generally, the dual of the lattice of
regions of oriented matroids), the n-dimensional cube minimizes the cd-index coefficientwise [7]. This
is the zonotopal analogue of Stanley’s Gorenstein∗ lattice conjecture [28, Conjecture 2.7].

We continue this vein of research by introducing further classes of linear inequalities for flag f -
vectors of zonotopes. We develop two sharper versions of the inequality appearing in Theorem 1.1. For
an n-dimensional zonotope we show that the expression in Theorem 1.1 is at least the value obtained
by the n-dimensional cube Cn; see Theorem 3.1. The second improvement is the case when u = 1.
We can replace the factor ∆q by the larger factor 2q, where 2q denotes the coefficient of q in the
cd-index of the k-dimensional cube Ck; see Theorem 3.6.

2 Preliminaries

For standard terminology for posets we refer the reader to [25]. A partially ordered set (poset) P is
ranked if there is a rank function ρ : P −→ Z such that when x is covered by y then ρ(y) = ρ(x) + 1.
Furthermore, the poset P is graded of rank n if it is ranked and has a minimal element 0̂ and a
maximal element 1̂ such that ρ(0̂) = 0 and ρ(1̂) = n. Define the interval [x, y] to be the subposet
{z ∈ P : x ≤ z ≤ y}. Observe that the interval [x, y] is also a graded poset of rank ρ(y)− ρ(x).

Let P be a graded poset of rank n+ 1. For S = {s1 < s2 < · · · < sk} a subset of {1, . . . , n}, define
fS to be the number of chains 0̂ = x0 < x1 < · · · < xk+1 = 1̂, where the rank of the element xi is si for
1 ≤ i ≤ k. These 2n values constitute the flag f-vector of the poset P . Define the flag h-vector of P
by the two equivalent relations hS =

∑
T⊆S(−1)|S−T |fT and fS =

∑
T⊆S hT . There has been a lot of

recent work in understanding the flag f -vectors of graded posets and Eulerian posets. For example,
see [1, 4, 9].

For S a subset of {1, . . . , n} define the monomial uS = u1u2 · · ·un, where ui = a if i 6∈ S and
ui = b if i ∈ S. Define the ab-index of a graded poset P of rank n+ 1 to be the sum

Ψ(P ) =
∑
S

hS · uS .
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A poset P is Eulerian if every interval [x, y], where x 6= y, has the same number of elements of odd
rank as the number of elements of even rank. This condition states that every interval [x, y] satisfies
the Euler-Poincaré relation. The condition of being Eulerian is equivalent to the condition that the
Möbius function µ(x, y) is (−1)ρ(x,y). The two main examples of Eulerian posets are the strong Bruhat
order and face lattices of convex polytopes.

The following result was conjectured by Fine and proved by Bayer and Klapper [5]. It states
that the generalized Dehn-Sommerville subspace GDSSn is naturally isomorphic to the space of cd-
polynomials of degree n.

Theorem 2.1 The ab-index of an Eulerian poset P , Ψ(P ), can be written in terms of c = a + b and
d = a · b + b · a.

When Ψ(P ) is expressed in terms of c and d it is called the cd-index of the poset P . There exist several
proofs of this result in the literature; see [5, 10, 12, 17, 27]. The cd-index has been extraordinarily
useful for flag vector computations; see [3, 7, 16]. Moreover, this basis is now emerging as a key tool
for obtaining linear inequalities for the entries of the flag f -vector; see [6, 13, 14, 27].

Define an inner product 〈·|·〉 on R〈c,d〉 by 〈u|v〉 = δu,v for all cd-monomials u and v, and extend
this relation by linearity. Using this notation any linear inequality on the flag f -vector of an n-
dimensional polytope can be expressed as 〈H|Ψ(P )〉 ≥ 0, where H is homogeneous cd-polynomial of
degree n.

In the remainder of this section we will focus upon the cd-index of zonotopes. However, all the
results carry over to oriented matroids. In order to keep the statements of the results explicit, we will
use the geometric language of zonotopes and their hyperplane arrangements.

A zonotope Z is a polytope obtained by the Minkowski sum of line segments, that is, Z = [0,v1]+
· · ·+[0,vm]. For each line segment [0,vi] let Hi be the hyperplane through the origin that is orthogonal
to vi. The collection of these hyperplanes H = {H1, . . . ,Hm} is the central hyperplane arrangement
associated to the zonotope Z. The intersection lattice L of the arrangement H is the collection of all
the intersections of the hyperplanes H1, . . . ,Hm ordered by reverse inclusion.

Let ω be the linear map from R〈a,b〉 to R〈c,d〉 defined on an ab-monomial by replacing each
occurrence of ab with 2d and then replacing the remaining variables by c. The fundamental theorem
of computing the cd-index of a zonotope is the following [7]:

Theorem 2.2 Let Z be a zonotope (and more generally, let Z be the dual of the lattice of regions of an
oriented matroid). Let L be the intersection lattice of the associated central hyperplane arrangement H
and Ψ(L) the ab-index of the lattice L. Then the cd-index of the zonotope and the sum of the cd-
indices of all the vertex figures of the zonotope are given by

Ψ(Z) = ω(a ·Ψ(L)), (2.1)∑
v

Ψ(Z/v) = 2 · ω(Ψ(L)), (2.2)

where v ranges over all vertices of the zonotope Z.
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The identity (2.1) is [7, Theorem 3.1]. The identity (2.2) follows from (2.1) and using the linear map
h defined in Section 8 in [7].

It remains to compute the ab-index of the intersection lattice L. We do this using R-labelings. For
more details, see [7, Section 7] and [11, 24, 25]. Linearly order the hyperplanes in the arrangement H
as H = {H1, . . . ,Hm}. Mark each edge x ≺ y in the Hasse diagram of the lattice L with the smallest
(in the given linear order) hyperplane H such that intersecting x with H gives y. That is,

λ(x, y) = min{i : x ∩Hi = y}.

For a maximal chain c = {0̂ = x0 ≺ x1 ≺ · · · ≺ xn = 1̂} in the intersection lattice L define its descent
set D(c) by

D(c) = {i : λ(xi−1, xi) > λ(xi, xi+1)}.

We then have the following result; see Section 7 in [7].

Theorem 2.3 The ab-index of intersection lattice L is given by

Ψ(L) =
∑
c

uD(c),

where the sum ranges over all maximal chains c in the lattice L.

3 Inequalities for zonotopes

In this section we will improve Theorem 1.1 for zonotopes. Let Cn denote the n-dimensional cube.

Theorem 3.1 Let Z be an n-dimensional zonotope (and more generally, let Z be the dual of the
lattice of regions of an oriented matroid). Let q be a cd-monomial of degree k that contains at least
one d. Then the cd-index Ψ(Z) satisfies the inequality〈

u ·
(
q −∆q · ck

)
· v |Ψ(Z)−Ψ(Cn)

〉
≥ 0.

for any two cd-monomials u and v such that deg(u) + deg(v) = n− k.

Definition 3.2 Let q be a cd-monomial of degree k that contains at least one d. For two cd-
polynomials z and w define the order relation z �q w if the inequality

〈
u · (q −∆q · ck) · v|w − z

〉
≥ 0

holds for all cd-monomials u and v.

In this notation Theorem 3.1 becomes Ψ(Z) �q Ψ(Cn) and that of Theorem 1.1 becomes Ψ(P ) �q
0. Note that this order relation differs slightly from the order relation used in [13].

Lemma 3.3 Let z and w be non-negative cd-polynomials such that z �q 0 and w �q 0. Then we
have z · d · w �q 0.
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Proof: Without loss of generality, we may assume that z and w are homogeneous polynomials. We
would like to prove 〈

u · (q −∆q · ck) · v | z · d · w
〉
≥ 0,

for all cd-monomials u and v such that deg(u) + deg(v) = deg(zdw)− k, where k is the degree of q.
We do this in three cases. The first case is deg(uck) ≤ deg(z). Try to factor v = v1 · v2 such that
deg(uckv1) = deg(z). If such factoring is not possible, both sides of the inequality are equal to zero.
If factoring is possible then

〈
u(q −∆qck)v|zdw

〉
=
〈
u(q −∆qck)v1|z

〉
· 〈v2|dw〉 ≥ 0. The second case

is deg(u) ≥ deg(zd), which is symmetric to the first case.

The third is deg(uck) > deg(z) and deg(u) < deg(zd). Since z and w have non-negative coefficients
we have 〈uqv|zdw〉 ≥ 0. Moreover,

〈
uckv|zdw

〉
= 0. This completes the third case. 2

Proposition 3.4 Let Z be an n-dimensional zonotope and let Z ′ be the zonotope obtained by taking
the Minkowski sum of Z with a line segment in the affine span of Z. Then we have Ψ(Z ′) �q Ψ(Z).

Proof: Let H and H′ be the associated hyperplane arrangements and let H be the new hyperplane.
Let H′ inherit the linear order of H with the new hyperplane H inserted at the end of the linear order.
Similarly, let L and L′ be the corresponding intersection lattices. Observe that every maximal chain
in L is also a maximal chain in L′. Also observe that there is no maximal chain in L′ whose last label
is H. Hence the difference in the ab-indices between the two intersection lattices is

Ψ(L′)−Ψ(L) =
∑
c

uD(c) (3.1)

=
∑

0̂<x≺y

Ψ([0̂, x]) · ab ·Ψ([y, 1̂]) +
∑

0̂=x≺y

b ·Ψ([y, 1̂]), (3.2)

where the first sum (3.1) is over all maximal chains c containing the label H and the two sums in (3.2)
are over edges x ≺ y in the Hasse diagram of L′ having the label H. Applying the map w 7−→ ω(a ·w)
we obtain

Ψ(Z ′)−Ψ(Z) =
∑

0̂<x≺y

ω(a ·Ψ([0̂, x])) · 2d · ω(Ψ([y, 1̂])) +
∑
0̂≺y

2d · ω(Ψ([y, 1̂])). (3.3)

The term ω(a · Ψ([0̂, x])) is the cd-index of a zonotope and hence is non-negative in the order �q
by Theorem 1.1. Similarly, the term ω(Ψ([y, 1̂])) is one half of the sum of cd-indices of the vertex
figures of a zonotope and hence is also �q-non-negative. The result now follows by Lemma 3.3 and
the property that the order �q is preserved under addition. 2

Proof of Theorem 3.1: Observe that any n-dimensional zonotope is obtained from the n-dimensional
cube Cn by Minkowski adding line segments. Thus the result follows from Proposition 3.4. 2

The second improvement of the zonotopal inequalities is when comparing the coefficients of ckv
and qv, that is, when u is equal to 1. Let 2q denote the coefficient of the monomial q in the cd-index
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of the k-dimensional cube Ck, that is, 2q = 〈q|Ψ(Ck)〉. For ease in notation, we introduce a second
order relation.

Definition 3.5 Let q be a cd-monomial of degree k that contains at least one d and let z and
w be two cd-polynomials. Define the order relation z �′q w on the cd-polynomials z and w by〈
(q −2q · ck) · v|w − z

〉
≥ 0 for all cd-monomials v.

Theorem 3.6 Let Z be an n-dimensional zonotope (and more generally, let Z be the dual of the lattice
of regions of an oriented matroid). Let q be a cd-monomial of degree k that contains at least one d.
Then the cd-index Ψ(Z) satisfies the inequality Ψ(Z) �′q Ψ(Cn). That is, for all cd-monomials v of
degree n− k we have 〈

(q −2q · ck) · v |Ψ(Z)−Ψ(Cn)
〉
≥ 0.

The proof of Theorem 3.6 consists of the following lemma and two propositions.

Lemma 3.7 Let z and w be two non-negative cd-polynomials such that z �′q 0. Then we have
z · d · w �′q 0. Furthermore if deg(q) ≤ deg(z) we have that z · w �′q 0.

Proof: We would like to show for all cd-monomials v that
〈
(q −2qck)v|zdw

〉
≥ 0, where k = deg(q).

Consider first the case when k ≤ deg(z). Try to write v = v1 · v2 such that k + deg(v1) = deg(z).
If this is not possible both sides are equal to zero. If this is possible we have

〈
(q −2qck)v|zdw

〉
=〈

(q −2qck)v1|z
〉
· 〈v2|dw〉 ≥ 0. The second case is k > deg(z). Then directly we have

〈
ckv|zdw

〉
= 0.

Also 〈qv|zdw〉 ≥ 0, since both z and w have non-negative coefficients. The second statement
of the lemma is proved by similar reasoning, where there is only the case:

〈
(q −2qck)v|zw

〉
=〈

(q −2qck)v1|z
〉
· 〈v2|w〉 ≥ 0. 2

Proposition 3.8 The cd-index of the n-dimensional cube Cn satisfies Ψ(Cn) �′q 0.

Proof: The proof is by induction on n. Observe that when n < deg(q) there is nothing to prove.
When n = deg(q) the result is directly true. The induction step is based on the Purtill recursion for
the cd-index of the n-dimensional cube; see [15, 23] or [16, Proposition 4.2]:

Ψ(Cn+1) = Ψ(Cn) · c +
n−1∑
i=0

2n−i ·
(
n

i

)
·Ψ(Ci) · d ·Ψ(Σn−i−1).

By Lemma 3.7 we observe that all the terms in this expression are greater than 0 in the order �′q. 2
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Proposition 3.9 Let Z be an n-dimensional zonotope and let Z ′ be the zonotope obtained by taking
the Minkowski sum of Z with a line segment in the affine span of Z. Assume that all zonotopes W
of dimension n − 1 and less satisfy the relation 0 �′q Ψ(W ). Then the order relation Ψ(Z) �′q Ψ(Z ′)
holds.

Proof: The proof follows the same outline as the proof of Proposition 3.4. By Lemma 3.7 each term
in equation (3.3) is non-negative in the order �′q. Since the property of being non-negative is preserved
under addition, the result follows. 2

We now prove Theorem 3.6.

Proof of Theorem 3.6: The proof is by induction. The base of the induction is n = 0 which is
straightforward. For the induction step assume that every zonotope W of dimension k less than n
satisfies the inequality Ψ(Ck) �′q Ψ(W ). Especially, we know that the cd-index of a lower dimensional
zonotope is non-negative in the order �′q. Thus by Proposition 3.9 we know that Ψ(Z) �′q Ψ(Z ′) holds
for n-dimensional zonotopes. Now the theorem follows from Propositions 3.8. 2

4 Concluding remarks

In the view of the lifting technique in [13], it is natural to consider the following conjecture.

Conjecture 4.1 Let H be a cd-polynomial homogeneous of degree k such that for all k-dimensional
polytopes P the inequality 〈H |Ψ(P )〉 ≥ 0 holds. Then for all n-dimensional zonotopes (and more
generally, the dual of the lattice of regions of an oriented matroid) the inequality

〈u ·H · v |Ψ(Z)−Ψ(Cn)〉 ≥ 0

holds for all cd-monomials u and v such that the sum of their degrees is n− k, u does not end with c
and v does not begin with c.

Conjecture 4.1 is the zonotopal analogue of Conjecture 6.1 in [13]. Theorem 3.1 is the verification
of Conjecture 4.1 in the case when H = q − ∆q · ck. Moreover, in the light of Theorem 3.6 we also
suggest the next conjecture.

Conjecture 4.2 Let H be a cd-polynomial homogeneous of degree k such that for all k-dimensional
zonotopes Z (and more generally, the dual of the lattice of regions of an oriented matroid) the in-
equality 〈H |Ψ(Z)−Ψ(Ck)〉 ≥ 0 holds. Then for all n-dimensional zonotopes (oriented matroids) the
inequality

〈H · v |Ψ(Z)−Ψ(Cn)〉 ≥ 0

holds for all cd-monomials v of degree n− k.
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There are other natural questions that arise. For instance, is there a way to interpolate between
Theorems 3.1 and 3.6? Such an interpolation would let the factor vary between the constants ∆q

and 2q, depending on the degree of the monomial u. Another inequality to consider is the following
multiplicative version of Theorem 3.1:

Conjecture 4.3 The cd-index of a zonotope Z (and more generally, the dual of the lattice of regions
of an oriented matroid) satisfies the inequality

〈uqv|Ψ(Z)〉
〈uckv|Ψ(Z)〉

≥ 〈uqv|Ψ(Cn)〉
〈uckv|Ψ(Cn)〉

.

More linear inequalities for the flag f -vector of zonotopes can be obtained by the Kalai convolu-
tion [20]. That is, if the two inequalities 〈H1|Ψ(Z)〉 ≥ 0 and 〈H2|Ψ(P )〉 ≥ 0 hold for all m-dimensional
zonotopes, respectively all n-dimensional polytopes, then the inequality 〈H1 ∗H2|Ψ(Z)〉 ≥ 0 holds for
all (m+n+1)-dimensional zonotopes. For an explicit description of the convolution on cd-polynomials,
see [13, Proposition 2.2].

Finally, another class of linear inequalities for the flag f -vector of zonotopes have been obtained
by Varchenko and Liu; see [18, 22, 30]. Recently, this class has been sharpened by Stenson [29].
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