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We combinatorially prove that the number R(n, k) of permutations of length n
having k runs is a log-concave sequence in k, for all n. We also give a new com-
binatorial proof for the log-concavity of the Eulerian numbers. � 2000 Academic Press

1. INTRODUCTION

Let p= p1 p2 } } } pn be a permutation of the set [1, 2, ..., n] written in the
one-line notation. We say that p get changes direction at position i, if either
pi&1<pi>pi+ j , or p i&1>pi>pi+1 , in other words, when p i is either a
peak or a valley. We say that p has k runs if there are k&1 indices i so that
p changes direction at these positions. So, for example, p=3561247 has 3
runs as p changes direction when i=3 and when i=4. A geometric way to
represent a permutation and its runs by a diagram is shown in Fig. 1. The
runs are the line segments (or edges) between two consecutive entries
where p changes direction. So a permutation has k runs if it can be
represented by k line segments so that the segments go ``up'' and ``down''
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FIG. 1. The permutation 3561247 has three runs.

exactly when the entries of the permutation do. The theory of runs has
been studied in [4, Sect. 5.1.3] in connection with sorting and searching.

In this paper, we study the numbers R(n, k) of permutations of length n
or, in what follows, n-permutations with k runs. We will show that for any
fixed n, the sequence R(n, k), k=0, 1, ..., n&1 is log-concave, that is,
R(n, k&1) } R(n, k+1)�R(n, k)2. In particular, this implies [1, 6] that
this same sequence is unimodal, that is, there exists an m so that
R(n, 1)�R(n, 2)� } } } �R(n, m)�R(n, m+1)� } } } �R(n, n&1). We will
also show that roughly half of the roots of the generating function
Rn(x)=�n&1

k=1 R(n, k) xk are equal to &1, and give a combinatorial inter-
pretation for the term which remains after one divides Rn(x) by all the
(x+1) factors. While doing that, we will also give a new proof of the
well-known fact [2, p. 292] that the Eulerian numbers are log-concave.

2. THE FACTORIZATION OF Rn(x)

Let p= p1p2 } } } pn be a permutation. We say that i is a descent of p if
pi>pi+1 , while we say that i is an ascent of p if pi<pi+1.

In our study of n-permutations with a given number of runs, we can
clearly assume that i is an ascent of p. Taking the permutation
q=q1q2 } } } qn , where qi=n+1& pi , we get the complement of p, which has
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the same number of runs as p. This implies in particular that for any given
i, there are as many n-permutations with k runs in which pi<pi+1 as there
are such permutations in which pi+1>pi+1 .

Let Rn(x)=�n&1
k=1 R(n, k) xk be the ordinary generating function of

n-permutations by the number of runs. So we have R2(x)=2x,
R3(x)=2x+4x2, and R4(x)=10x3+12x2+2x. One sees that all coef-
ficients of Rn(x) are even, which is explained by the symmetry described
above.

It is easy to notice the phenomenon that Rn(x) seems to be divisible by
(x+1) if n�4. Further analysis of numerical data leads to the significantly
stronger conjecture that Rn(x) is divisible by (x+1)m, where m=w(n&2)�2x.

Our goal is to prove that conjecture, and also, to find a combinatorial
interpretation for the polynomial obtained after dividing Rn(x) by the
highest possible power of (x+1). For that purpose, we introduce the
following definition.

Definition 2.1. For j�m=w(n&2)�2x, we say that p is a j-half-
ascending permutation if, for all positive integers i� j, we have pn+1&2i<
pn+2&2i . If j=m, then we will simply say that p is a half-ascending
permutation.

So p is a 1-half-ascending permutation if pn&1<pn . In a j-half-ascending
permutation, we have j relations, and they involve the rightmost j disjoint
pairs of entries. The term half-ascending refers to the fact that at least half
of the involved positions are ascents. There are n! } 2& j j-half-ascending
permutations.

Now we define a modified version of the polynomials Rn(x) for j-half-
ascending permutations.

Definition 2.2. Let p be a j+1-half-ascending permutation. Let rj ( p)
be the number of runs of the substring p1 , p2 , ..., pn&2j , and let sj ( p) be the
number of descents of the substring pn&2j , pn+1&2j , ..., pn . Denote
tj ( p)=rj ( p)+sj ( p) and define

Rn, j (x)= :
p # Sn

xtj ( p).

In particular, we will denote Rn, m(x) by Tn(x), that is, Tn(x) is the generat-
ing function for half-ascending permutations.

So in other words, we count the runs in the non-half-ascending part and
the first two elements of the half-ascending part, and we count the descents
in the rest of the half-ascending part (and on that part, as it will be dis-
cussed, the number of descents determines that of runs.) Let I be the
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involution interchanging pn&1 and pn . Now we are in a position to state
and prove the main result of this section.

Lemma 2.3. For all n�4 and 1� j�m, we have

Rn(x)
2(x+1) j=Rn, j (x),

where m=w(n&2)�2x.

Proof. By induction on j. For j=1, the statement says that Rn(x)�(x+1)
=2Rn, 1(x).

Take all permutations in which pn&3<pn&2 . The generating function of
these by the number of runs is Rn(x)�2. Involution I makes pairs of
permutations, and each pair contains two elements whose numbers of runs
differ by 1. Dividing Rn(x)�2 by (x+1) we obtain the run-generating func-
tion for the set of permutations which contains one element of each of these
pairs, namely, the one having the smaller number of runs. Observe that for
these permutations, the number of runs is equal to the value of t1( p) for the
permutation in that, pair in which pn1

<pn (by checking both possibilities
pn&2<pn&1 and pn&2>pn&1 ; see the following example), so Rn(x)�2(x+1)
=Rn, 1(x).

We point out that it is not true in general that in each pair made by I,
the permutation having the smaller number of runs is the one with
pn&1<pn . What is true is that we can suppose that pn&1<pn if we count
permutations by the defined parameter t1( p) instead of the number of runs.
This latter could be viewed as the t0( p) parameter. Before turning to the
induction step, the reader may want to study the following example.

Example 2.4. If n=4, then we have 6 permutations in which p3<p4

and p1<p2 : 1234, 1324, 1423, 2314, 2413, 3412. We have t1(1234)=1 and
t1( p)=2 for all the other five permutations, showing that indeed, that
indeed, R4, 1x=2(5x2+x). The images of these six permutations by I are,
respectively, 1243, 1342, 1432, 2341, 2431, 3421, and one verifies that in
each of these pairs, the permutation with the smaller number of runs has
a number of runs equal to the t1( p)-value of the element of that pair in
which pn&1<pn . This argument carries over for n>4, too, for it is only the
last four elements where the number of runs can be affected by I.

Now suppose we know the statement for j&1 and prove it for j. As
above, apply I to the two rightmost entries of our permutations to get pairs
as in the initial case, and apply the induction hypothesis to the leftmost
n&2 elements. By the induction hypothesis, the string of the leftmost n&2
elements can be replaced by a j-half-ascending n&2-permutation, and the
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number of runs can be replaced by the tj&1 -parameter. In particular,
pn&3<pn&2 will hold, and therefore we can verify that our statement holds
in both cases ( pn&2<pn&1 or pn&2>pn&1) exactly as we did in the proof
of the initial case, and the previous example. K

Thus in particular, we have

Rn(x)
2(x+1)m=Tn(x),

so we have proved that m=w(n&2)�2x of the roots of Rn(x) are equal to
&1, and certainly, one other root is equal to 0 as all permutations have at
least one run. It is possible to prove analytically [2, Sect. 7.1, Theorem B]
that the other half of the roots of Rn(x), that is, the roots of Tn(x), are all
real, negative, and distinct. That implies [6] that the coefficients of Rn(x)
and Tn(x) are log-concave.

However, in the next section we will combinatorially prove that the coef-
ficients of Tn(x) form a log-concave sequence. Let U(n, k) be the coefficient
of xk in Tn(x). Let U(n, k) be the set of half-ascending permutations with
k descents, so |U(n, k)|=U(n, k).

Now suppose for simplicity that n is even and assume that p is a
half-ascending permutation, that is, p2i&1<p2i for all i, 1�i�n�2. The
following proposition summarizes the different ways we can describe the
same parameter of p.

Proposition 2.5. Let p be a half-ascending permutation. Then p has
2k+1 runs if and only if p has k descents, or, in other words, when
t( p)=k+1.

If n is odd, then the rest of our argument is a little more tedious, though
conceptually not more difficult. We do not want to break the course of our
proof here, so we will go on with the assumption that n is even, then, in
the second part of the proof of Theorem 4.2, we will indicate what
modifications are necessary to include the case of odd n.

So in order to prove that the sequence R(n, k) is log-concave in k, we
need to prove that the sequence U(n, k) enumerating half-ascending
n-permutations with k descents is log-concave. That is sufficient as the
convolution of two log-concave sequences is log-concave [6].

3. A LATTICE PATH INTERPRETATION

Following [3], we will set up a bijection from the set A(n, k) of
n-permutations with k descents onto that of labeled northeastern lattice
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paths with n edges, exactly k of which are vertical. However, our lattice
paths will be different from those in [3]; in particular, they will preserve
the information if the position i is an ascent or descent.

Let P(n) be the set of labeled northeastern lattice paths with the n edges
a1 , a2 , ..., an and the corresponding positive integers as labels e1 , e2 , ..., en

so that the following hold:

(1) the edge a1 is horizontal and e1=1,

(2) if the edges ai and ai+1 are both vertical, or both horizontal, then
ei�ei+1 ,

(3) if ai and ai+1 are perpendicular to each other, then
ei+ei+1�i+1.

We will not distinguish between paths which can obtained from each other
by translations. Let P(n, k) be the set of all such labeled lattice paths which
have k vertical edges, and let P(n, k)=|P(n, k)|.

Proposition 3.1. The following two properties of paths in P(n) are
immediate from the definitions.

v For all i�2, we have ei�i&1.

v Fix the label ei . Then if ei+1 can take value v, then it can take all
positive integer values w�v.

Also note that all restrictions on ei+1 are given by ei , independently of
preceding ej , j<i. The following bijection is the main result in this section.

Theorem 3.2. The following description defines a bijection from A(n)
onto P(n), where A(n) is the set of all n-permutations. Let p # A(n). To
obtain the edge ai and the label ei for 2�i�n, restrict the permutation p to
the i first entries and relabel the entries to obtain the permutation
q=q1 } } } q i .

v If the position i&1 is a descent of the permutation p (equivalently,
of the permutation q), let the edge ai be vertical and the label ei be equal
to qi .

v If the position i&1 is an ascent of the permutation p, let the edge ai

be horizontal and the label ei be i+1&qi .

Moreover, this bijection restricts naturally to a bijection between A(n, k) and
P(n, k) for 0�k�n&1.

Proof. It is straightforward to see that the map described is injective.
Assume that i&1 and i are both descents of the permutation p. Let q,
respectively r, be the permutation when restricted to the i, respectively
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FIG. 2. The image of the permutation 243165.

i+1, first elements. Observe that qi is either ri or ri&1. Since ri>ri+1 we
have qi�ri+1 and condition (2) is satisfied in this case. By similar reason-
ing the three remaining cases are shown, hence the map is into the set
P(n).

To see that this is a bijection, we show that we can recover the permuta-
tion p from its image. It is sufficient to show that we can recover pn , and
then use induction on n for the rest of p. To recover pn from its image,
simply recall that pn is equal to the label l of the last edge if that edge is
vertical, and to n+1&l if that edge is horizontal. Conditions (2) and (3)
assure that this way we always get a number between 1 and n for pn . K

The lattice path corresponding to the permutation 243165 is shown on
Fig. 2.

The difference between our bijection and that of [3] is that in ours, the
direction of ai tells us whether pi&1 is a descent in p. This is why we can
use this bijection to gain information on the class of half-ascending
permutations.

Corollary 3.3. The bijection in Theorem 3.2 restricts to a bijection
from U(n, k) to lattice paths in P(n, k) where ai is horizontal for all even
indices i.

4. THE LOG-CONCAVITY OF U(n, k)

In this section we give a new proof of the fact that the numbers
A(n, k)=|A(n, k)| are unimodal in k, for any fixed n. This fact is already

299LOG-CONCAVITY FOR PERMUTATIONS



known and has an elegant proof [3]. However, our proof will also show
the unimodality of the U(n, k).

Theorem 4.1. For all positive integers n and all positive integers
k�n&1 we have

A(n, k&1) } A(n, k+1)�A(n, k)2

and also

U(n, k&1) } U(n, k+1)�U(n, k)2.

Proof. To prove the theorem combinatorially, we construct an injection

8: P(n, k&1)_P(n, k+1) � P(n, k)_P(n, k).

This injection 8 will be defined differently on different parts of the domain.
In particular, the restriction of 8 onto V(n, k&1)_V(n, k+1) will

map into V(n, k)_V(n, k), where V(n, k) is the subset of P(n, k) consist-
ing of lattice paths in which ai is horizontal for all even i.

Let (P, Q) # P(n, k&1)_P(n, k+1). Place the initial points of P and Q
at (0, 0) and (1, &1), respectively. Then the endpoints of P and Q are
(n&k+1, k&1) and (n&k, k), respectively, so P and Q intersect. Let X be
their first intersection point (we order intersection points from southwest
to northeast) and decompose P=P1 _ P2 and Q=Q1 _ Q2 , where P1 is a
path from (0, 0) to X, P2 is a path from X to (n&k, k), P1 is a path from
(1, &1) to X, and Q2 is a path from X to (n&k+1, k&1). Let a, b, c, d
be the labels of the four edges adjacent to X as shown in Fig. 4, the edges
AX and XB originally belonging to P and the edges CX and XD originally
belonging to Q. Then by condition (2) we have a�b and c�d. (It is
possible that these four edges are not all distinct; A and C are always dis-
tinct as X is the first intersection point, but it could be, that B=D and so
BX=DX; this singular case can be treated very similarly to the generic
case we describe below and is hence omitted.) Let P$=P1 _ Q2 and let
Q$=Q1 _ P2 .

v If P$ and Q$ are valid paths, that is, if their labeling fulfills condi-
tions (1)�(3), then we set 8(P, Q)=(P$, Q$). See Fig. 3 for this construc-
tion. This way we have defined 8 for pairs (P, Q) # P(n, k)_P(n, k) in
which a+d�i and b+c�i, where i&1 is the sum of the two coordinates
of X. We also point out that as we haven't changed any labels, in (P$, Q$)
we still have a�b and c�d though it is no longer required as the edges
in question are no longer parts of the same path.
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FIG. 3. Constructing the new pair of paths.

It is clear that 8(P, Q)=(P$, Q$) # P(n, k)_P(n, k) (in particular,
(P$, Q$) belongs to the subset of P(n, k)_P(n, k) consisting of intersecting
pairs of paths), and that 8 is one-to-one.

v What remains to do is to define 8(P, Q) for those (P, Q) #
P(n, k&1)_P(n, k+1) for which it cannot be defined this way, that is,
when either a+d>i or b+c>i holds.

Change the label of the edge AX to i&c and change the label of the edge
CX to i&a as seen in Fig. 5, then proceed as in the previous case to get
8(P, Q)=(P$, Q$), where P$=P1 _ Q2 and let Q$=Q1 _ P2 .

We claim that P$ and Q$ are valid paths. Indeed we had at least one
of a+d>i and b+c>i, so we must have a+c>i as a�b and c�d.
Therefore, i&a<c and i&c<a, so we have decreased the values of the
labels of edges AX and CX, and that is always possible as showed in
Proposition 3.1. Moreover, no constraints are violated in P$ and Q$ by the
edges adjacent to X as i&c+d�i and i&a+b�i. It is also clear that 8
is one-to-one on this part of the domain, too. Finally, we have to show that
the image of this part of the domain is disjoint from that of the previous
part. This is true because in this part of the domain we have at least one
of a+d>i and b+c>i, that is, at last one of i&c<b and i&a<d, so in
the image, at least one of the pairs of edges AX, XB and CX, XD does not

FIG. 4. Labels around the point X.
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FIG. 5. Changed labels around the point X.

have the property that the label of the first edge is at least as large as that
of the second one. And, as pointed out in the previous case, all elements
of the image of the previous part of the domain do have that property.

To prove that the sequence [U(n, k)] is log-concave, recall that half-
ascending permutations in U(n, k) correspond to elements of V(n, k), that
is, elements of P(n, k) in which all edges ai are horizontal if i is even. We
point out that this implies B=D. Then note that 8 does not change the
indices of the edges, in other words, if 8(P, Q)=(P$, Q$), and a given edge
northeast from X was the ith edge of path P, then it will be the ith edge
of path Q$. Therefore, 8 preserves the property that all even-indexed edges
are horizontal, so the restriction of 8 into V(n, k&1)_V(n, k+1) maps
into V(n, k)_V(n, k). As any restriction of 8 is certainly one-to-one, this
proves that U(n, k&1) } U(n, k+1)�U(n, k)2. K

Now we are in a position to prove the main result of this paper.

Theorem 4.2. The polynomial Rn(x) has log-concave coefficients, for all
positive integers n.

Proof. First suppose that n is even. For n�3, the statement is true. If
n�4, then Lemma 2.3 shows that Rn(x)=2 } (x+1)m Tn(x). The coef-
ficients of (x+1)m are just the binomial coefficients, which are clearly log-
concave, while the coefficients of Tn(x) are the U(n, k), which are log-con-
cave by Theorem 4.1. As the product of two polynomials with log-concave
coefficients has log-concave coefficients [6], the proof is complete for n
even.

If n is odd, then the equivalent of Proposition 2.5 is a bit more cumber-
some. Again, we make use of symmetry by taking complements, but instead
of assuming p1<p2 , let us assume that p2<p3 . Taking Rn, m(x) then adds
the restrictions p4<p5 , p6<p7 , ..., pn&1<pn . Then it is straightforward
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from the definition of tm( p) that tm( p)=d( p) where d( p) is the number of
descents of p, and we say, for simplicity, that the singleton p1 has 0 runs.

So for odd n we have T odd
n (x)=�p # Sn , p2<p3

xtm( p)=�p # Sn , p2<p3
xd( p),

and then, in order to see that the coefficients of T odd
n (x) are log-concave,

we can repeat the argument of Theorem 4.1. Indeed, the coefficient of xk in
T odd

n (x) equals the cardinality of V(n, k), the subset of P(n, k) in which the
edges a3 , a5 , ..., a7 are horizontal. And the fact that the |V(n, k)| are log-
concave can be proved exactly as the corresponding statement for the
|V(n, k)|=U(n, k), that is, by taking the relevant restriction of 8.

This completes the proof of the theorem for all n. K
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