
3 - Vector Spaces

Vectors in R2 and R3 are essentially matrices.  They can be viewed either as column

vectors (matrices of size 2×1 and 3×1, respectively) or row vectors (1×2 and 1×3 matrices).  The

addition and scalar multiplication defined on real vectors are precisely the corresponding

operations on matrices.  Thus the matrix definitions provide a structure on Rn , real n-space or n-

dimensional space, whose vectors can be thought of as either row or column matrices with n

elements for any n = 1, 2, 3, ...  This is the central idea in linear algebra: the notion of vector

space which we now define.

Definition

 Let V be a set and K be either the real, R, or the complex numbers, C.  We call V a vector space

(or linear space) over the field of scalars K provided that there are two operations, vector

addition and scalar multiplication, such that for any vectors u, v, and w in V and for any scalars

" and $ in K:

1. (Closure) v + w and "v are in V,

2. (Associativity) u + (v + w) = (u + v) + w

3. (Commutativity) v + w = w + v

4. There exists some element 0 in V with v + 0 = v (0 which is independent of v is called

the identity of V.)

5. (Inverses) There exists an element -v in V with v + -v = 0

6. (Distribution) "(v + w) = "v + "w

7. (" + $) v = "v + $v

8. "($v) = ("$)v

9. 1v = v

The process of abstracting the primary structure of a system into a general definition is

extremely common in mathematics and serves several purposes.  Proving results about the

generalized object yields corresponding information about any specific case which satisfies the

axioms of the system.  In addition it is sometimes actually easier to see (and prove) what is going



on in the general object which does not have extra features which might otherwise obscure its

essence.  The examples below are to testify to the wide range of vector spaces.

Examples

1. For any positive integers m and n, Mm×n(R), the set of m by n matrices with real entries, is

a vector space over R with componentwise addition and scalar multiplication.

2. We use Mm×n(C) to denote the set of m by n matrices whose entries are complex numbers. 

This forms a vector space over either the reals or the complexes which is to say, we may

consider the scalars here to come from either R or C.

3. Rn, as mentioned above, is a vector space over the reals.

4. Cn considered as either M1×n(C) or Mn×1(C) is a vector space with its field of scalars being

either  R or C.

5. The set of all real valued functions, F, on R with the usual function addition and scalar

multiplication is a vector space over R.

6. The set of all polynomials with coefficients in R and having degree less than or equal to

n, denoted Pn, is a vector space over R.

Theorem

Suppose that u, v, and w are elements of some vector space.  Then

1. If u + v = w + v, then u = w. (The cancellation property holds.)

2. The inverse of v, -v, is unique.

3. The identity element 0 is unique.

4. 0v = 0

5. (-1)v = -v

Proof

Suppose that u + v = w + v.  Adding -v to both sides of the equation yields,

 (u + v) + -v = (w + v) + -v

So    u + (v + -v) = w + (v + -v)

Thus,   u + 0 = w + 0

which means we get  u = w which proves property 1.

Suppose that vectors u and w are both inverses of v.  Then u + v = 0 = w + v.  Applying the



cancellation we just proved gives us u = w, so inverses are unique.  Even more readily, if 0 and

0N both will serve as the identity, then 0 = 0 + 0N = 0N.  Thus a vector space has only one identity. 

From this it follows that, since, v = (1 + 0)v = 1v + 0v = v + 0v implies that 0v is an identity,

0v = 0.  Finally, 0v = (1 + -1)v = 1v + (-1)v = v + (-1)v and so, by the uniqueness of inverses, -v

= (-1)v.

Numerous important examples of vector spaces are subsets of other vector spaces.  

Definition

Let S be a subset of a vector space V over K.  S is a subspace of V if S is itself a vector space

over K under the addition and scalar multiplication of V.

Theorem

Suppose that S is a nonempty subset of V, a vector space over K.  The following are equivalent:

1. S is a subspace of V.

2. S is closed under vector addition and scalar multiplication.

3. S is closed under the process of taking linear combinations, i.e., if v and w are in S and "

and $ are in K, then "v + $w is in S.

Proof

Suppose that S is a subspace of V.   Then S is a vector space and so is closed with respect to

addition and scalar multiplication.  Thus, 1 implies 2.  Also, if " and $ are scalars and v and w

are vectors in S,  then "v and $w are in S, so the linear combination "v + $w is also in S. 

Hence, 1 implies 3.

Now since S is (simply) a subset of V, it satisfies properties 2, 3, and 6 - 9.  For example,

suppose v and w are in S.  Then v and w are also in V so  v + w = w + v, i.e., S satisfies property

3, commutativity of addition.  If we assume that S  is closed under vector addition and scalar

multiplication (condition 2 above), then this is precisely property 1 in the definition of vector

space.  Also since S is not empty there is some v in S.  Closure under scalar multiplication then

implies that 0v = 0 is in S.  Thus, S includes the identity as required by  property 4.  Then if v is

any vector in S, (-1)v = -v is also in S.  So S possesses inverses and so satisfies property 5. 



Hence we have shown that S is a vector space and, consequently, condition 2 implies 1.

Finally, if S satisfies condition 3 and so is closed under linear combinations, then assume that v

and w are in S and ( is any scalar.  Taking " = 1 = $, we see that "v + $w = v + w is in S and S

is closed under addition.  Letting " = 0, the fact that "v + (w = 0v + (w = 0 + (w = (w shows

that S is closed under scalar multiplication. Thus, 3 implies 2 and the theorem is established.

Examples

1. Consider S = {(0, y, z): y and z are any real numbers}.  S is a subset of R3.  S is also a

subspace since addition and scalar multiplication is by components so the 0 in the first

component will be preserved and we get that S is closed under both operations.  Note that

S is essentially R2.

2. Letting Dm×n be the set of all m×n diagonal matrices it is easy to see that Dm×n is a

subspace of Mm×n.

3. The smallest subspace of any vector space is {0}, the set consisting solely of the zero

vector.

4. For any n the set of lower triangular n×n matrices is a subspace of Mn×n =Mn.

5. The set of all n×n symmetric matrices is a subspace of Mn.  What properties of the

transpose are used to show this?

6. Let S = { f : f is in F and f(2) = 0}.  This is a subspace of F since if f and g are in S and c

is in R, f(2) = 0 = g(2) so (f + g) (2) = f(2) + g(2) = 0 (so f + g is in S) and (cf)(2) = c0 =

0 (so cf is in S.)

7. Define a subset of R3 by setting S = { (x, y, z) ; 5x - y + 7z = 0}.  Suppose that v = (x, y,

z) and w = (s, t, u) are in S.  Then, by definition of S, 5x - y + 7z = 0 = 5s - t + 7u so that

5(x + s) - (y + t) + 7(z + u) = 0.  Thus v + w is in S.  Additionally, for any scalar a, 5(ax) -

ay + 7az = a(5x - y + 7z) = 0, so S is closed under scalar multiplication.  S is, therefore, a

subspace of R3.

Problems

1. Is the set of all upper triangular matrices a vector space?



2. Is the set of all unit lower triangular matrices of size n×n a subspace of Mn?

Let v1, v2, ... vn be vectors in some vector space V.    Define the subspace generated by these

vectors by S = <v1, v2, ... vn > = {"1v1 + "2v2 + ... + "nvn: each "k is in K}.  Then S is nothing

more that all possible linear combinations of these vectors.  To see that S is indeed a subspace of

V use the linear combination characterization of subspace (condition 3) along with the

commutative and associative properties and the “fake” distributive and associative properties

(properties 7 and 8 in the definition of vector space.)   This is the smallest subspace of V

containing the original vectors.

Example

Geometrically in R2 and R3 (and the same is true in Rn for any n = 2, 3, 4, ...) we have seen that

scalar multiples of a given vector v result in a vector in the same or opposite direction as v.  The

set of all such vectors, the subspace generated by v, <v>, is a line through the origin provided v

… 0.  (What if v = 0?)  Assuming that v and w are vectors in Rn that are not parallel (and so not

scalar multiples of each other), consider P = <v, w>.  The subspace P includes the lines through

the origin “containing” v and w as well as all the linear combinations "v + $w.  Each vector "v

or $w corresponds to a point on one of the lines through the origin and v or w, respectively.  By

the parallelogram rule for visualizing vector addition, the vector sum "v + $w is the diagonal (or

vertex) of the parallelogram whose other vertices are the origin, "v, and $w.  This a point on the

plane determined by the origin and the points v and w.  Thus, P fills up this plane and is a plane

containing the origin.  In particular, if , then the associated plane is

given by  which is precisely the plane containing the

three distinct points (0,0,0) , (1,0,-1), and (2,7,0).

There are several important spaces associated with any  matrix A.  The column space of



A, denoted , is the subspace of  generated by the n columns of A.  (Why is 

 a subspace of ?)  That is, if   are the n columns of A, then

.

We have seen that the matrix equation   has a solution if and only if b is a linear

combination of the columns of A (see the chapter 2 - Solving Linear Equations.)  That is, 

 is consistent if and only  

 

for some   where   are the n columns of A.

In the present terminology we can state this fact as: Ax = b has a solution if and only if b is in

C(A).

Problems

Set A =  , B = , and C = .

1 0 0
0 5 0
0 0 2−
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Determine the column spaces of A, B, and C.

The null space of A is defined by N(A) = {x : Ax = 0}.  It consists precisely of those vectors

which when multiplied by A yield the zero vector.  If A is an m×n matrix, then N(A) is a subset

of Rn, that is, it consists of vectors which can be multiplied on the left by A.  

Example



Suppose that .  Then the vectors   and   belong to  

while   fails to belong to the null space.  (How does one verify that statement?)

In fact, N(A) is a subspace of Rn as we now show.  Since 0 is in N(A) (the homogeneous system

always has the trivial solution) N(A) is nonempty.   Suppose that x and y are in N(A) and that "

is a real number.  Then, by definition, Ax = 0 = Ay.  Therefore, A(x + y) = Ax + Ay = 0 + 0 = 0. 

Thus, x + y is in N(A), so N(A) is closed under addition.  Also the fact that A("x) = "(Ax) = "0

= 0 tells us that "x is in N(A).  Hence,  N(A) is closed under scalar multiplication. We, therefore,

have that the null space of A is a subspace.

An immediate application of null spaces is as solution sets for systems of linear equations.  If A

is the coefficient matrix for a system and the constants of it are all zeroes (so the system is

homogeneous), then is corresponds to the matrix equation A x = 0 and solving the system

consists of describing the null space of A.  When the system is not homogeneous (the matrix

equation is Ax = b and b … 0), the solution set is not a subspace since 0 is not a solution.  Still

N(A) is useful in describing the solution set as we shall see later.  For now we consider the

homogeneous case.



To solve a linear system of equations we have used elimination to simplify the equations or its

augmented matrix to a “staircase” form.  We make precise the forms that we use in the following

Definition.

A matrix is in echelon (or row echelon) form if 

1. Any rows consisting entirely of zeros are grouped at the bottom of the matrix.

2. The first nonzero element of any row is called a pivot.  The pivot in any row is located to

the right of the pivot in the row directly above it.

A matrix is in reduced echelon form if it is in echelon form, its pivots are all ones, and any

column containing a pivot consists entirely of zeros in its remaining entries.

Example

1.   is not in row echelon form.

2.   is in row echelon form.

3.   is in both row echelon form and reduced row echelon form.

The target of the elimination that we did previously was an upper triangular matrix U, the

echelon form.  The process made use of elementary equation operations though working with the

augmented matrix using row operations accomplishes the same end (in fact, recall that we

proceeded to frame the process in terms of multiplications by elementary matrices.)  To achieve

reduced echelon form requires one additional operation.  Here, for convenience and reference,

are all three operations.  

Elementary Row Operations



1. Multiplication of any row by a nonzero constant.

2. Interchanging any two rows.

3. Addition of a multiple of one row to another.

Directly corresponding to systems of equations being equivalent if and only if they have the

same solution set is the definition that two matrices are row equivalent if one can be transformed

into the other by a finite sequence of elementary row operations.  In our previous work we did

not need to use the first operation, multiplication of a row by a nonzero constant, because we

were not transforming to reduced form.  To change pivot values to ones typically requires this

operation.  An advantage of reduced echelon form is the fact that any given matrix is row

equivalent to a unique matrix in reduced echelon form.  

To solve a system in the spirit in which we have worked requires that we first row reduce the

augmented matrix to upper triangular or echelon form.  Note that in the present discussion of

homogeneous systems reducing the coefficient matrix suffices. Scalar multiplication of rows will

then make all the pivots into ones and adding multiples of lower rows to the upper rows (what

amounts to back substitution) will complete the transformation into reduced echelon form.

Example

Solve the following system expressing the solution in terms of vectors in the null space.

 2x +   6y +  8z  +  6w = 0

-4x  - 12y -  20z - 20w = 0

  4x + 12y + 14z + 8 w = 0

The coefficient matrix is

2 6 8
4 12 20

4 12 14

6
20
8

− − − −
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Adding 2 times row one to row two and -2 times row one to row three gives the matrix



2 6 8
0 0 4
0 0 2

6
8
4
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−
−
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Adding -1/2 times row two to row three yields the echelon form

2 6 8
0 0 4
0 0 0

6
8

0
− −
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Multiply row two by -1/4 and row one by ½ to make the pivots one.

1 3 4
0 0 1
0 0 0

3
2
0
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Then finally adding - 4 times row two to row one results in the desired reduced echelon form.

1 3 0
0 0 1
0 0 0

5
2
0
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The solution can be read as x + 3y     -5w = 0

                                                      z + 2w = 0

or in vector form as
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Notice that y and w can be any value.  We call these free variables and point out that they came

from columns that do not have pivots.  The variables x and z are called pivot variables.  They

were associated with the columns that had pivots.  The solution consists of all linear

combinations of the vectors .  That is, the null space of this coefficient matrix is
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