CONSTRUCTING BUILDINGS WITH POV-RAY
- 4 -

CONSTRUCTING BUILDINGS WITH POV-RAY

Getting POV-Ray

POV-Ray is free software that can be downloaded from http://www.povray.org/. In this exercise we will see how to construct buildings with POV-Ray to produce beautiful, more realistic, images than Wingeom.

Translating Cubes

As in one of the activities with Wingeom, we construct our building by first constructing a single cube, and then making copies of it in various locations by translating it. Unlike in Wingeom, in which you specify the translation by a vector with a starting point and an ending point, in POV-Ray you specify the translation by three numbers.

For example, the translation <1,3,4> means “move the cube 1 unit in the direction of the positive x-axis, followed by 3 units in the direction of the positive y-axis, followed by 4 units in the direction of the positive z-axis”.

This is all you need to know. The POV-Ray file has other stuff in it that you do not need to change or worry about (unless you later want to!). You can concentrate on changing the part of the file in which the cubes are translated, and you can save yourself a lot of work by using “copy and paste”.

Here is an example of a POV-Ray file, called “Cubes.pov”, which you can open from POV-Ray using “File(Open File”. Skip down to the bottom of the file to see where the cubes are defined.

#include "colors.inc"

#include "woods.inc"

#include "stones.inc"

#include "metals.inc"

#include "golds.inc"

#include "glass.inc"

//Place the camera

camera {

 sky <0,0,1> //Don't change this

 direction <-1,0,0> //Don't change this

 location <10,10,5> //Change this if you want to move the camera to a different point

 look_at <0,0,0> //Change this if you want to aim the camera at a different point

 right <-4/3,0,0> //Don't change this

 angle 30

}

//Place a light

light_source {

 <10,-10,10> //Change this if you want to put the light at a different point

 color White*3
}

//Set a background color

background { color White*2 }

//Create a "floor"

plane {

 <0,0,-1>,0

 texture { T_Silver_1A }

}

//Create a box that extends between the 2 specified points

#declare mycube = box {

 <0,0,0> // one corner position <X1 Y1 Z1>

 <1,1,1> // other corner position <X2 Y2 Z2>

}

//Change cubes and their locations below this point.

object { mycube texture {T_Stone32} }

object { mycube translate <1,0,0> texture {T_Stone32} }

object { mycube translate <0,1,0> texture {T_Stone32} }

object { mycube translate <0,2,0> texture {T_Stone32} }

object { mycube translate <0,1,1> texture {T_Stone32} }

The building itself is described in just the last five lines of the file, so concentrate on this first. The first cube is not translated anywhere, and sits with one of its vertices at the origin, where the x-, y-, and z-axes meet.

The second cube is translated 1 unit in the direction of the positive x-axis.

The third cube is translated 1 unit in the direction of the positive y-axis.

The fourth cube is translated 2 units in the direction of the positive y-axis.

The fifth cube is translated 1 unit in the direction of the positive y-axis, and then 1 unit in the direction of the positive z-axis.

Here is what the building looks like when constructed with Wingeom:

[image: image1.emf]
This is what the building looks like when constructed and rendered with POV-Ray. Notice both the shadows and the reflection in the shiny floor! (This image is in color may not photocopy well).
[image: image2.png]

To create the image from the file, use the pull-down menu in the upper left corner to select “[640x480, AA 0.3]” (you may change this to get different sizes of output) and then use “Render(Start Rendering’’.
Making Your Own Buildings

Make a copy of the file “Cubes.pov” under a new name. Change the locations of the cubes by changing the translation vectors in the lines at the end of the file, and “copy and paste” these lines to add more cubes of your choice.

Now the fun really begins! Change “T_Stone32” and “T_Silver_1A” to other textures—see the list in the file “POVRayTextures.doc”.

POV-Ray can do a whole lot more, including entire animated movies, but this gives you a taste. Take a look at some of the stunning pictures on the POV-Ray website. If your students wonder what it’s like to design a video game, here is a way to bring in some geometry. One student in Lexington, Lukas DiBeneditto, used another program to create a virtual model of the entire Tates Creek High School that you could walk through on the computer.
