13. LINES ON THE PLANE

There are three ways of looking at lines on the plane. One is geometric, one is algebraic, and one is physical. Geometrically, a line L is supposed to look as the x-axis. It is expressed by requiring that there is a parametrization z(t), $t \in R$, such that the distance between z(t) and z(s) is exactly the same as the distance between t and s, i.e. |z(t)-z(s)| = |t-s| for all $s, t \in R$. That way L has the same geometric properties as the x-axis.

Traditional way of defining lines algebraically is to represent them in the standard form, i.e. as solution set of $a \cdot x + b \cdot y + c = 0$ for some real numbers a, b, and c with $a^2 + b^2 > 0$.

Yet another way of looking at lines is more closely related to physics. It is the trajectory of a linear motion with constant velocity m. That means the formula for motion is $s(t) = m \cdot t + b$, where m is a non-zero complex number and b is a constant (the initial position in the motion). We assume that the time t varies from minus infinity to plus infinity.

The purpose of this section is to look at lines and segments from the point of view of complex numbers.

Problem 13.1. (H)

Suppose a, b, c are real and both a and b are not zero at the same time. Show that $a \cdot x + b \cdot y + c = 0$ represents a line.

GEOMETRY AND COMPLEX NUMBERS (March 22, 2004) 19Hint(s) to 13.1: Can you solve for y? What if you cannot solve for y?

Problem 13.2. (H)

Show that each line on the plane has equation of the form $a \cdot x + b \cdot y + c = 0$, where a, b, c are real and both a and b are not zero at the same time.

Hint(s) to 13.2: First consider vertical lines, then non-vertical ones.

Problem 13.3. Show that each line on the plane has equation of the form $a \cdot z + b \cdot \overline{z} + c = 0$, where a is the conjugate of b, $b \neq 0$, and c is real.

GEOMETRY AND COMPLEX NUMBERS (March 22, 2004) 23 **Problem 13.4.** Suppose $a \cdot z + b \cdot \overline{z} + c = 0$ is an equation of a line on the plane so that cis real. Prove that a is the conjugate of b and $b \neq 0$. **Problem 13.5.** (A) The line passing through $1+2 \cdot i$ and $4+5 \cdot i$ has equation $a \cdot z + b \cdot \overline{z} + c = 0$, where c = 2. Find a.

Answer to 13.5: 1 + 1i

Problem 13.6. Let a, b, c be three complex numbers. Show that if c is the algebraic average of a and b (i.e., c = (a + b)/2), then c is the geometric midpoint between a and b (i.e., |a-c| = |b-c| = |a-b|/2).

27

Problem 13.7. Let a, b, c be three complex numbers. Show that if c is the geometric midpoint between a and b (i.e., |a - c| = |b - c| = |a - b|/2), then it is the algebraic average of a and b (i.e., c = (a + b)/2).

Problem 13.8. Suppose z and w are two different complex numbers and t is between 0 and 1. Prove that $v = t \cdot z + (1 - t) \cdot w$ lies on the segment between z and w.

Problem 13.9. Suppose a, b, and c are three different complex numbers such that |a - c| + |c - b| = |a - b|. Prove that there is t between 0 and 1 so that $c = t \cdot a + (1 - t) \cdot b$.

Problem 13.10. Suppose z_1 and z_2 are two different points of plane. Prove that z lies on the line joining z_1 and z_2 if and only if there is a real number t such that $z = t \cdot z_1 + (1 - t) \cdot z_2$.

Problem 13.11. Suppose z_1 and z_2 are two different points of plane. Prove that the line joining z_1 and z_2 contains z if and only if $(z - z_2)/(z_1 - z_2)$ is a real number.

Problem 13.12. Suppose z_1 and z_2 are two different points of plane. Suppose z_3 and z_4 are two different points of plane. Prove that the line joining z_1 and z_2 is parallel to the line joining z_3 and z_4 if and only if $(z_1 - z_2)/(z_3 - z_4)$ is a real number.

Problem 13.13. Suppose z_1 and z_2 are two different points of plane. Suppose z_3 and z_4 are two different points of plane. Prove that the line joining z_1 and z_2 is perpendicular to the line joining z_3 and z_4 if and only if $(z_1 - z_2)/(z_3 - z_4)$ is an imaginary number.

Problem 13.14. Suppose z_1 , z_2 , and z_3 are three different points of plane. Prove that they form a right triangle at z_1 if and only if $|z_2 - z_3|^2 = |z_1 - z_2|^2 + |z_1 - z_3|^2$. Do not use Pythagoras Theorem. This is Pythagoras Theorem.

GEOMETRY AND COMPLEX NUMBERS (March 22, 2004) 35 **Problem 13.15.** Prove that the segment joining midpoints of two sides of a triangle is parallel to the third side and equal to half its length. 36

Problem 13.16. Prove that any two medians of a triangle cut each other into segments whose lengths have ratio 2:1.

GEOMETRY AND COMPLEX NUMBERS (March 22, 2004) 37 **Problem 13.17.** Prove that the three medians of any triangle are concurrent.

MATH DEPT, UNIVERSITY OF TENNESSEE, KNOXVILLE, TN 37996-1300, USA $E\text{-mail}\ address:\ dydak@math.utk.edu$