JERZY DYDAK

Our initial definition of a line is a bit complicated but will be improved soon: lines are either vertical and have an equation x = c or are non-vertical and have an equation $y = m \cdot x + b$.

18

Problem 13.1. (H)

Suppose a, b, c are real and both a and b are not zero at the same time. Show that $a \cdot x + b \cdot y + c = 0$ represents a line. **Hint(s) to 13.1**: Can you solve for y? What if you cannot solve for y?

Problem 13.2. (H)

Show that each line on the plane has equation of the form $a \cdot x + b \cdot y + c = 0$, where a, b, c are real and both a and b are not zero at the same time. Hint(s) to 13.2: First consider vertical lines, then non-vertical ones.

Problem 13.3. (H)

Suppose a line on the plane has two equations: $a \cdot x + b \cdot y + c = 0$ and $a' \cdot x + b' \cdot y + c' = 0$. Show that there is a non-zero real number k such that $a' = k \cdot a, b' = k \cdot b$, and $c' = k \cdot c$. Hint(s) to 13.3: Can you solve for x or y from both equations? If you can solve for x what kind of a line is that?

Problem 13.4. Show that each line on the plane has equation of the form $a \cdot z + b \cdot \overline{z} + c = 0$, where a is the conjugate of b, $b \neq 0$, and c is real.

Problem 13.5. (H)

Suppose a line on the plane has two equations: $a \cdot z + b \cdot \overline{z} + c = 0$ and $a' \cdot z + b' \cdot \overline{z} + c' = 0$. Show that there is a non-zero complex number k such that $a' = k \cdot a, b' = k \cdot b$, and $c' = k \cdot c$. Conclude that, if $c \neq 0$ is real, then b is the conjugate of a. Hint(s) to 13.5: Can you solve for z or \overline{z} ? What does it mean if you can solve for z (is that a line)? **Problem 13.6.** (A) The line passing through $1+2 \cdot i$ and $4+5 \cdot i$ has equation $a \cdot z + b \cdot \overline{z} + c = 0$, where c = 2. Find a.

Answer to 13.6: 1 + 1i

Problem 13.7. Let a, b, c be three complex numbers. Show that if c is the algebraic average of a and b (i.e., c = (a + b)/2), then c is the geometric midpoint between a and b (i.e., |a-c| = |b-c| = |a-b|/2).

31

Problem 13.8. Let a, b, c be three complex numbers. Show that if c is the geometric midpoint between a and b (i.e., |a - c| = |b - c| = |a - b|/2), then it is the algebraic average of a and b (i.e., c = (a + b)/2).

JERZY DYDAK

Problem 13.9. Suppose z and w are two different complex numbers and t is between 0 and 1. Prove that $v = t \cdot z + (1 - t) \cdot w$ lies on the segment between z and w.

Problem 13.10. Suppose a, b, and c are three different complex numbers such that |a - c| + |c - b| = |a - b|. Prove that there is t between 0 and 1 so that $c = t \cdot a + (1 - t) \cdot b$.

Problem 13.11. Suppose z_1 and z_2 are two different points of plane. Prove that z lies on the line joining z_1 and z_2 if and only if there is a real number t such that $z = t \cdot z_1 + (1 - t) \cdot z_2$.

Problem 13.12. Suppose z_1 and z_2 are two different points of plane. Prove that the line joining z_1 and z_2 contains z if and only if $(z - z_2)/(z_1 - z_2)$ is a real number.

Problem 13.13. Suppose z_1 and z_2 are two different points of plane. Suppose z_3 and z_4 are two different points of plane. Prove that the line joining z_1 and z_2 is parallel to the line joining z_3 and z_4 if and only if $(z_1 - z_2)/(z_3 - z_4)$ is a real number.

36

Problem 13.14. Suppose z_1 and z_2 are two different points of plane. Suppose z_3 and z_4 are two different points of plane. Prove that the line joining z_1 and z_2 is perpendicular to the line joining z_3 and z_4 if and only if $(z_1 - z_2)/(z_3 - z_4)$ is an imaginary number.

JERZY DYDAK

Problem 13.15. Suppose z_1 , z_2 , and z_3 are three different points of plane. Prove that they form a right triangle at z_1 if and only if $|z_2 - z_3|^2 = |z_1 - z_2|^2 + |z_1 - z_3|^2$. Do not use Pythagoras Theorem. This is Pythagoras Theorem.

38

GEOMETRY AND COMPLEX NUMBERS (April 7, 2004) 39 **Problem 13.16.** Prove that the segment joining midpoints of two sides of a triangle is parallel to the third side and equal to half its length. 40

Problem 13.17. Prove that any two medians of a triangle cut each other into segments whose lengths have ratio 2:1.

GEOMETRY AND COMPLEX NUMBERS (April 7, 2004) 41 **Problem 13.18.** Prove that the three medians of any triangle are concurrent.

JERZY DYDAK

MATH DEPT, UNIVERSITY OF TENNESSEE, KNOXVILLE, TN 37996-1300, USA $E\text{-mail}\ address:\ dydak@math.utk.edu$